Server IP : 162.0.209.157 / Your IP : 3.12.34.211 [ Web Server : LiteSpeed System : Linux premium178.web-hosting.com 4.18.0-513.24.1.lve.2.el8.x86_64 #1 SMP Fri May 24 12:42:50 UTC 2024 x86_64 User : balaoqob ( 2395) PHP Version : 8.0.30 Disable Function : NONE Domains : 1 Domains MySQL : OFF | cURL : ON | WGET : ON | Perl : ON | Python : ON | Sudo : OFF | Pkexec : OFF Directory : /lib/python2.7/site-packages/google/protobuf/internal/ |
Upload File : |
# -*- coding: utf-8 -*- # # Protocol Buffers - Google's data interchange format # Copyright 2008 Google Inc. All rights reserved. # https://developers.google.com/protocol-buffers/ # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following disclaimer # in the documentation and/or other materials provided with the # distribution. # * Neither the name of Google Inc. nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """Unittest for reflection.py, which also indirectly tests the output of the pure-Python protocol compiler. """ import copy import gc import operator import six import struct try: import unittest2 as unittest #PY26 except ImportError: import unittest from google.protobuf import unittest_import_pb2 from google.protobuf import unittest_mset_pb2 from google.protobuf import unittest_pb2 from google.protobuf import descriptor_pb2 from google.protobuf import descriptor from google.protobuf import message from google.protobuf import reflection from google.protobuf import text_format from google.protobuf.internal import api_implementation from google.protobuf.internal import more_extensions_pb2 from google.protobuf.internal import more_messages_pb2 from google.protobuf.internal import message_set_extensions_pb2 from google.protobuf.internal import wire_format from google.protobuf.internal import test_util from google.protobuf.internal import testing_refleaks from google.protobuf.internal import decoder BaseTestCase = testing_refleaks.BaseTestCase class _MiniDecoder(object): """Decodes a stream of values from a string. Once upon a time we actually had a class called decoder.Decoder. Then we got rid of it during a redesign that made decoding much, much faster overall. But a couple tests in this file used it to check that the serialized form of a message was correct. So, this class implements just the methods that were used by said tests, so that we don't have to rewrite the tests. """ def __init__(self, bytes): self._bytes = bytes self._pos = 0 def ReadVarint(self): result, self._pos = decoder._DecodeVarint(self._bytes, self._pos) return result ReadInt32 = ReadVarint ReadInt64 = ReadVarint ReadUInt32 = ReadVarint ReadUInt64 = ReadVarint def ReadSInt64(self): return wire_format.ZigZagDecode(self.ReadVarint()) ReadSInt32 = ReadSInt64 def ReadFieldNumberAndWireType(self): return wire_format.UnpackTag(self.ReadVarint()) def ReadFloat(self): result = struct.unpack('<f', self._bytes[self._pos:self._pos+4])[0] self._pos += 4 return result def ReadDouble(self): result = struct.unpack('<d', self._bytes[self._pos:self._pos+8])[0] self._pos += 8 return result def EndOfStream(self): return self._pos == len(self._bytes) class ReflectionTest(BaseTestCase): def assertListsEqual(self, values, others): self.assertEqual(len(values), len(others)) for i in range(len(values)): self.assertEqual(values[i], others[i]) def testScalarConstructor(self): # Constructor with only scalar types should succeed. proto = unittest_pb2.TestAllTypes( optional_int32=24, optional_double=54.321, optional_string='optional_string', optional_float=None) self.assertEqual(24, proto.optional_int32) self.assertEqual(54.321, proto.optional_double) self.assertEqual('optional_string', proto.optional_string) self.assertFalse(proto.HasField("optional_float")) def testRepeatedScalarConstructor(self): # Constructor with only repeated scalar types should succeed. proto = unittest_pb2.TestAllTypes( repeated_int32=[1, 2, 3, 4], repeated_double=[1.23, 54.321], repeated_bool=[True, False, False], repeated_string=["optional_string"], repeated_float=None) self.assertEqual([1, 2, 3, 4], list(proto.repeated_int32)) self.assertEqual([1.23, 54.321], list(proto.repeated_double)) self.assertEqual([True, False, False], list(proto.repeated_bool)) self.assertEqual(["optional_string"], list(proto.repeated_string)) self.assertEqual([], list(proto.repeated_float)) def testRepeatedCompositeConstructor(self): # Constructor with only repeated composite types should succeed. proto = unittest_pb2.TestAllTypes( repeated_nested_message=[ unittest_pb2.TestAllTypes.NestedMessage( bb=unittest_pb2.TestAllTypes.FOO), unittest_pb2.TestAllTypes.NestedMessage( bb=unittest_pb2.TestAllTypes.BAR)], repeated_foreign_message=[ unittest_pb2.ForeignMessage(c=-43), unittest_pb2.ForeignMessage(c=45324), unittest_pb2.ForeignMessage(c=12)], repeatedgroup=[ unittest_pb2.TestAllTypes.RepeatedGroup(), unittest_pb2.TestAllTypes.RepeatedGroup(a=1), unittest_pb2.TestAllTypes.RepeatedGroup(a=2)]) self.assertEqual( [unittest_pb2.TestAllTypes.NestedMessage( bb=unittest_pb2.TestAllTypes.FOO), unittest_pb2.TestAllTypes.NestedMessage( bb=unittest_pb2.TestAllTypes.BAR)], list(proto.repeated_nested_message)) self.assertEqual( [unittest_pb2.ForeignMessage(c=-43), unittest_pb2.ForeignMessage(c=45324), unittest_pb2.ForeignMessage(c=12)], list(proto.repeated_foreign_message)) self.assertEqual( [unittest_pb2.TestAllTypes.RepeatedGroup(), unittest_pb2.TestAllTypes.RepeatedGroup(a=1), unittest_pb2.TestAllTypes.RepeatedGroup(a=2)], list(proto.repeatedgroup)) def testMixedConstructor(self): # Constructor with only mixed types should succeed. proto = unittest_pb2.TestAllTypes( optional_int32=24, optional_string='optional_string', repeated_double=[1.23, 54.321], repeated_bool=[True, False, False], repeated_nested_message=[ unittest_pb2.TestAllTypes.NestedMessage( bb=unittest_pb2.TestAllTypes.FOO), unittest_pb2.TestAllTypes.NestedMessage( bb=unittest_pb2.TestAllTypes.BAR)], repeated_foreign_message=[ unittest_pb2.ForeignMessage(c=-43), unittest_pb2.ForeignMessage(c=45324), unittest_pb2.ForeignMessage(c=12)], optional_nested_message=None) self.assertEqual(24, proto.optional_int32) self.assertEqual('optional_string', proto.optional_string) self.assertEqual([1.23, 54.321], list(proto.repeated_double)) self.assertEqual([True, False, False], list(proto.repeated_bool)) self.assertEqual( [unittest_pb2.TestAllTypes.NestedMessage( bb=unittest_pb2.TestAllTypes.FOO), unittest_pb2.TestAllTypes.NestedMessage( bb=unittest_pb2.TestAllTypes.BAR)], list(proto.repeated_nested_message)) self.assertEqual( [unittest_pb2.ForeignMessage(c=-43), unittest_pb2.ForeignMessage(c=45324), unittest_pb2.ForeignMessage(c=12)], list(proto.repeated_foreign_message)) self.assertFalse(proto.HasField("optional_nested_message")) def testConstructorTypeError(self): self.assertRaises( TypeError, unittest_pb2.TestAllTypes, optional_int32="foo") self.assertRaises( TypeError, unittest_pb2.TestAllTypes, optional_string=1234) self.assertRaises( TypeError, unittest_pb2.TestAllTypes, optional_nested_message=1234) self.assertRaises( TypeError, unittest_pb2.TestAllTypes, repeated_int32=1234) self.assertRaises( TypeError, unittest_pb2.TestAllTypes, repeated_int32=["foo"]) self.assertRaises( TypeError, unittest_pb2.TestAllTypes, repeated_string=1234) self.assertRaises( TypeError, unittest_pb2.TestAllTypes, repeated_string=[1234]) self.assertRaises( TypeError, unittest_pb2.TestAllTypes, repeated_nested_message=1234) self.assertRaises( TypeError, unittest_pb2.TestAllTypes, repeated_nested_message=[1234]) def testConstructorInvalidatesCachedByteSize(self): message = unittest_pb2.TestAllTypes(optional_int32 = 12) self.assertEqual(2, message.ByteSize()) message = unittest_pb2.TestAllTypes( optional_nested_message = unittest_pb2.TestAllTypes.NestedMessage()) self.assertEqual(3, message.ByteSize()) message = unittest_pb2.TestAllTypes(repeated_int32 = [12]) self.assertEqual(3, message.ByteSize()) message = unittest_pb2.TestAllTypes( repeated_nested_message = [unittest_pb2.TestAllTypes.NestedMessage()]) self.assertEqual(3, message.ByteSize()) def testSimpleHasBits(self): # Test a scalar. proto = unittest_pb2.TestAllTypes() self.assertTrue(not proto.HasField('optional_int32')) self.assertEqual(0, proto.optional_int32) # HasField() shouldn't be true if all we've done is # read the default value. self.assertTrue(not proto.HasField('optional_int32')) proto.optional_int32 = 1 # Setting a value however *should* set the "has" bit. self.assertTrue(proto.HasField('optional_int32')) proto.ClearField('optional_int32') # And clearing that value should unset the "has" bit. self.assertTrue(not proto.HasField('optional_int32')) def testHasBitsWithSinglyNestedScalar(self): # Helper used to test foreign messages and groups. # # composite_field_name should be the name of a non-repeated # composite (i.e., foreign or group) field in TestAllTypes, # and scalar_field_name should be the name of an integer-valued # scalar field within that composite. # # I never thought I'd miss C++ macros and templates so much. :( # This helper is semantically just: # # assert proto.composite_field.scalar_field == 0 # assert not proto.composite_field.HasField('scalar_field') # assert not proto.HasField('composite_field') # # proto.composite_field.scalar_field = 10 # old_composite_field = proto.composite_field # # assert proto.composite_field.scalar_field == 10 # assert proto.composite_field.HasField('scalar_field') # assert proto.HasField('composite_field') # # proto.ClearField('composite_field') # # assert not proto.composite_field.HasField('scalar_field') # assert not proto.HasField('composite_field') # assert proto.composite_field.scalar_field == 0 # # # Now ensure that ClearField('composite_field') disconnected # # the old field object from the object tree... # assert old_composite_field is not proto.composite_field # old_composite_field.scalar_field = 20 # assert not proto.composite_field.HasField('scalar_field') # assert not proto.HasField('composite_field') def TestCompositeHasBits(composite_field_name, scalar_field_name): proto = unittest_pb2.TestAllTypes() # First, check that we can get the scalar value, and see that it's the # default (0), but that proto.HasField('omposite') and # proto.composite.HasField('scalar') will still return False. composite_field = getattr(proto, composite_field_name) original_scalar_value = getattr(composite_field, scalar_field_name) self.assertEqual(0, original_scalar_value) # Assert that the composite object does not "have" the scalar. self.assertTrue(not composite_field.HasField(scalar_field_name)) # Assert that proto does not "have" the composite field. self.assertTrue(not proto.HasField(composite_field_name)) # Now set the scalar within the composite field. Ensure that the setting # is reflected, and that proto.HasField('composite') and # proto.composite.HasField('scalar') now both return True. new_val = 20 setattr(composite_field, scalar_field_name, new_val) self.assertEqual(new_val, getattr(composite_field, scalar_field_name)) # Hold on to a reference to the current composite_field object. old_composite_field = composite_field # Assert that the has methods now return true. self.assertTrue(composite_field.HasField(scalar_field_name)) self.assertTrue(proto.HasField(composite_field_name)) # Now call the clear method... proto.ClearField(composite_field_name) # ...and ensure that the "has" bits are all back to False... composite_field = getattr(proto, composite_field_name) self.assertTrue(not composite_field.HasField(scalar_field_name)) self.assertTrue(not proto.HasField(composite_field_name)) # ...and ensure that the scalar field has returned to its default. self.assertEqual(0, getattr(composite_field, scalar_field_name)) self.assertTrue(old_composite_field is not composite_field) setattr(old_composite_field, scalar_field_name, new_val) self.assertTrue(not composite_field.HasField(scalar_field_name)) self.assertTrue(not proto.HasField(composite_field_name)) self.assertEqual(0, getattr(composite_field, scalar_field_name)) # Test simple, single-level nesting when we set a scalar. TestCompositeHasBits('optionalgroup', 'a') TestCompositeHasBits('optional_nested_message', 'bb') TestCompositeHasBits('optional_foreign_message', 'c') TestCompositeHasBits('optional_import_message', 'd') def testReferencesToNestedMessage(self): proto = unittest_pb2.TestAllTypes() nested = proto.optional_nested_message del proto # A previous version had a bug where this would raise an exception when # hitting a now-dead weak reference. nested.bb = 23 def testDisconnectingNestedMessageBeforeSettingField(self): proto = unittest_pb2.TestAllTypes() nested = proto.optional_nested_message proto.ClearField('optional_nested_message') # Should disconnect from parent self.assertTrue(nested is not proto.optional_nested_message) nested.bb = 23 self.assertTrue(not proto.HasField('optional_nested_message')) self.assertEqual(0, proto.optional_nested_message.bb) def testGetDefaultMessageAfterDisconnectingDefaultMessage(self): proto = unittest_pb2.TestAllTypes() nested = proto.optional_nested_message proto.ClearField('optional_nested_message') del proto del nested # Force a garbage collect so that the underlying CMessages are freed along # with the Messages they point to. This is to make sure we're not deleting # default message instances. gc.collect() proto = unittest_pb2.TestAllTypes() nested = proto.optional_nested_message def testDisconnectingNestedMessageAfterSettingField(self): proto = unittest_pb2.TestAllTypes() nested = proto.optional_nested_message nested.bb = 5 self.assertTrue(proto.HasField('optional_nested_message')) proto.ClearField('optional_nested_message') # Should disconnect from parent self.assertEqual(5, nested.bb) self.assertEqual(0, proto.optional_nested_message.bb) self.assertTrue(nested is not proto.optional_nested_message) nested.bb = 23 self.assertTrue(not proto.HasField('optional_nested_message')) self.assertEqual(0, proto.optional_nested_message.bb) def testDisconnectingNestedMessageBeforeGettingField(self): proto = unittest_pb2.TestAllTypes() self.assertTrue(not proto.HasField('optional_nested_message')) proto.ClearField('optional_nested_message') self.assertTrue(not proto.HasField('optional_nested_message')) def testDisconnectingNestedMessageAfterMerge(self): # This test exercises the code path that does not use ReleaseMessage(). # The underlying fear is that if we use ReleaseMessage() incorrectly, # we will have memory leaks. It's hard to check that that doesn't happen, # but at least we can exercise that code path to make sure it works. proto1 = unittest_pb2.TestAllTypes() proto2 = unittest_pb2.TestAllTypes() proto2.optional_nested_message.bb = 5 proto1.MergeFrom(proto2) self.assertTrue(proto1.HasField('optional_nested_message')) proto1.ClearField('optional_nested_message') self.assertTrue(not proto1.HasField('optional_nested_message')) def testDisconnectingLazyNestedMessage(self): # This test exercises releasing a nested message that is lazy. This test # only exercises real code in the C++ implementation as Python does not # support lazy parsing, but the current C++ implementation results in # memory corruption and a crash. if api_implementation.Type() != 'python': return proto = unittest_pb2.TestAllTypes() proto.optional_lazy_message.bb = 5 proto.ClearField('optional_lazy_message') del proto gc.collect() def testHasBitsWhenModifyingRepeatedFields(self): # Test nesting when we add an element to a repeated field in a submessage. proto = unittest_pb2.TestNestedMessageHasBits() proto.optional_nested_message.nestedmessage_repeated_int32.append(5) self.assertEqual( [5], proto.optional_nested_message.nestedmessage_repeated_int32) self.assertTrue(proto.HasField('optional_nested_message')) # Do the same test, but with a repeated composite field within the # submessage. proto.ClearField('optional_nested_message') self.assertTrue(not proto.HasField('optional_nested_message')) proto.optional_nested_message.nestedmessage_repeated_foreignmessage.add() self.assertTrue(proto.HasField('optional_nested_message')) def testHasBitsForManyLevelsOfNesting(self): # Test nesting many levels deep. recursive_proto = unittest_pb2.TestMutualRecursionA() self.assertTrue(not recursive_proto.HasField('bb')) self.assertEqual(0, recursive_proto.bb.a.bb.a.bb.optional_int32) self.assertTrue(not recursive_proto.HasField('bb')) recursive_proto.bb.a.bb.a.bb.optional_int32 = 5 self.assertEqual(5, recursive_proto.bb.a.bb.a.bb.optional_int32) self.assertTrue(recursive_proto.HasField('bb')) self.assertTrue(recursive_proto.bb.HasField('a')) self.assertTrue(recursive_proto.bb.a.HasField('bb')) self.assertTrue(recursive_proto.bb.a.bb.HasField('a')) self.assertTrue(recursive_proto.bb.a.bb.a.HasField('bb')) self.assertTrue(not recursive_proto.bb.a.bb.a.bb.HasField('a')) self.assertTrue(recursive_proto.bb.a.bb.a.bb.HasField('optional_int32')) def testSingularListFields(self): proto = unittest_pb2.TestAllTypes() proto.optional_fixed32 = 1 proto.optional_int32 = 5 proto.optional_string = 'foo' # Access sub-message but don't set it yet. nested_message = proto.optional_nested_message self.assertEqual( [ (proto.DESCRIPTOR.fields_by_name['optional_int32' ], 5), (proto.DESCRIPTOR.fields_by_name['optional_fixed32'], 1), (proto.DESCRIPTOR.fields_by_name['optional_string' ], 'foo') ], proto.ListFields()) proto.optional_nested_message.bb = 123 self.assertEqual( [ (proto.DESCRIPTOR.fields_by_name['optional_int32' ], 5), (proto.DESCRIPTOR.fields_by_name['optional_fixed32'], 1), (proto.DESCRIPTOR.fields_by_name['optional_string' ], 'foo'), (proto.DESCRIPTOR.fields_by_name['optional_nested_message' ], nested_message) ], proto.ListFields()) def testRepeatedListFields(self): proto = unittest_pb2.TestAllTypes() proto.repeated_fixed32.append(1) proto.repeated_int32.append(5) proto.repeated_int32.append(11) proto.repeated_string.extend(['foo', 'bar']) proto.repeated_string.extend([]) proto.repeated_string.append('baz') proto.repeated_string.extend(str(x) for x in range(2)) proto.optional_int32 = 21 proto.repeated_bool # Access but don't set anything; should not be listed. self.assertEqual( [ (proto.DESCRIPTOR.fields_by_name['optional_int32' ], 21), (proto.DESCRIPTOR.fields_by_name['repeated_int32' ], [5, 11]), (proto.DESCRIPTOR.fields_by_name['repeated_fixed32'], [1]), (proto.DESCRIPTOR.fields_by_name['repeated_string' ], ['foo', 'bar', 'baz', '0', '1']) ], proto.ListFields()) def testSingularListExtensions(self): proto = unittest_pb2.TestAllExtensions() proto.Extensions[unittest_pb2.optional_fixed32_extension] = 1 proto.Extensions[unittest_pb2.optional_int32_extension ] = 5 proto.Extensions[unittest_pb2.optional_string_extension ] = 'foo' self.assertEqual( [ (unittest_pb2.optional_int32_extension , 5), (unittest_pb2.optional_fixed32_extension, 1), (unittest_pb2.optional_string_extension , 'foo') ], proto.ListFields()) def testRepeatedListExtensions(self): proto = unittest_pb2.TestAllExtensions() proto.Extensions[unittest_pb2.repeated_fixed32_extension].append(1) proto.Extensions[unittest_pb2.repeated_int32_extension ].append(5) proto.Extensions[unittest_pb2.repeated_int32_extension ].append(11) proto.Extensions[unittest_pb2.repeated_string_extension ].append('foo') proto.Extensions[unittest_pb2.repeated_string_extension ].append('bar') proto.Extensions[unittest_pb2.repeated_string_extension ].append('baz') proto.Extensions[unittest_pb2.optional_int32_extension ] = 21 self.assertEqual( [ (unittest_pb2.optional_int32_extension , 21), (unittest_pb2.repeated_int32_extension , [5, 11]), (unittest_pb2.repeated_fixed32_extension, [1]), (unittest_pb2.repeated_string_extension , ['foo', 'bar', 'baz']) ], proto.ListFields()) def testListFieldsAndExtensions(self): proto = unittest_pb2.TestFieldOrderings() test_util.SetAllFieldsAndExtensions(proto) unittest_pb2.my_extension_int self.assertEqual( [ (proto.DESCRIPTOR.fields_by_name['my_int' ], 1), (unittest_pb2.my_extension_int , 23), (proto.DESCRIPTOR.fields_by_name['my_string'], 'foo'), (unittest_pb2.my_extension_string , 'bar'), (proto.DESCRIPTOR.fields_by_name['my_float' ], 1.0) ], proto.ListFields()) def testDefaultValues(self): proto = unittest_pb2.TestAllTypes() self.assertEqual(0, proto.optional_int32) self.assertEqual(0, proto.optional_int64) self.assertEqual(0, proto.optional_uint32) self.assertEqual(0, proto.optional_uint64) self.assertEqual(0, proto.optional_sint32) self.assertEqual(0, proto.optional_sint64) self.assertEqual(0, proto.optional_fixed32) self.assertEqual(0, proto.optional_fixed64) self.assertEqual(0, proto.optional_sfixed32) self.assertEqual(0, proto.optional_sfixed64) self.assertEqual(0.0, proto.optional_float) self.assertEqual(0.0, proto.optional_double) self.assertEqual(False, proto.optional_bool) self.assertEqual('', proto.optional_string) self.assertEqual(b'', proto.optional_bytes) self.assertEqual(41, proto.default_int32) self.assertEqual(42, proto.default_int64) self.assertEqual(43, proto.default_uint32) self.assertEqual(44, proto.default_uint64) self.assertEqual(-45, proto.default_sint32) self.assertEqual(46, proto.default_sint64) self.assertEqual(47, proto.default_fixed32) self.assertEqual(48, proto.default_fixed64) self.assertEqual(49, proto.default_sfixed32) self.assertEqual(-50, proto.default_sfixed64) self.assertEqual(51.5, proto.default_float) self.assertEqual(52e3, proto.default_double) self.assertEqual(True, proto.default_bool) self.assertEqual('hello', proto.default_string) self.assertEqual(b'world', proto.default_bytes) self.assertEqual(unittest_pb2.TestAllTypes.BAR, proto.default_nested_enum) self.assertEqual(unittest_pb2.FOREIGN_BAR, proto.default_foreign_enum) self.assertEqual(unittest_import_pb2.IMPORT_BAR, proto.default_import_enum) proto = unittest_pb2.TestExtremeDefaultValues() self.assertEqual(u'\u1234', proto.utf8_string) def testHasFieldWithUnknownFieldName(self): proto = unittest_pb2.TestAllTypes() self.assertRaises(ValueError, proto.HasField, 'nonexistent_field') def testClearFieldWithUnknownFieldName(self): proto = unittest_pb2.TestAllTypes() self.assertRaises(ValueError, proto.ClearField, 'nonexistent_field') def testClearRemovesChildren(self): # Make sure there aren't any implementation bugs that are only partially # clearing the message (which can happen in the more complex C++ # implementation which has parallel message lists). proto = unittest_pb2.TestRequiredForeign() for i in range(10): proto.repeated_message.add() proto2 = unittest_pb2.TestRequiredForeign() proto.CopyFrom(proto2) self.assertRaises(IndexError, lambda: proto.repeated_message[5]) def testDisallowedAssignments(self): # It's illegal to assign values directly to repeated fields # or to nonrepeated composite fields. Ensure that this fails. proto = unittest_pb2.TestAllTypes() # Repeated fields. self.assertRaises(AttributeError, setattr, proto, 'repeated_int32', 10) # Lists shouldn't work, either. self.assertRaises(AttributeError, setattr, proto, 'repeated_int32', [10]) # Composite fields. self.assertRaises(AttributeError, setattr, proto, 'optional_nested_message', 23) # Assignment to a repeated nested message field without specifying # the index in the array of nested messages. self.assertRaises(AttributeError, setattr, proto.repeated_nested_message, 'bb', 34) # Assignment to an attribute of a repeated field. self.assertRaises(AttributeError, setattr, proto.repeated_float, 'some_attribute', 34) # proto.nonexistent_field = 23 should fail as well. self.assertRaises(AttributeError, setattr, proto, 'nonexistent_field', 23) def testSingleScalarTypeSafety(self): proto = unittest_pb2.TestAllTypes() self.assertRaises(TypeError, setattr, proto, 'optional_int32', 1.1) self.assertRaises(TypeError, setattr, proto, 'optional_int32', 'foo') self.assertRaises(TypeError, setattr, proto, 'optional_string', 10) self.assertRaises(TypeError, setattr, proto, 'optional_bytes', 10) self.assertRaises(TypeError, setattr, proto, 'optional_bool', 'foo') self.assertRaises(TypeError, setattr, proto, 'optional_float', 'foo') self.assertRaises(TypeError, setattr, proto, 'optional_double', 'foo') # TODO(jieluo): Fix type checking difference for python and c extension if api_implementation.Type() == 'python': self.assertRaises(TypeError, setattr, proto, 'optional_bool', 1.1) else: proto.optional_bool = 1.1 def assertIntegerTypes(self, integer_fn): """Verifies setting of scalar integers. Args: integer_fn: A function to wrap the integers that will be assigned. """ def TestGetAndDeserialize(field_name, value, expected_type): proto = unittest_pb2.TestAllTypes() value = integer_fn(value) setattr(proto, field_name, value) self.assertIsInstance(getattr(proto, field_name), expected_type) proto2 = unittest_pb2.TestAllTypes() proto2.ParseFromString(proto.SerializeToString()) self.assertIsInstance(getattr(proto2, field_name), expected_type) TestGetAndDeserialize('optional_int32', 1, int) TestGetAndDeserialize('optional_int32', 1 << 30, int) TestGetAndDeserialize('optional_uint32', 1 << 30, int) try: integer_64 = long except NameError: # Python3 integer_64 = int if struct.calcsize('L') == 4: # Python only has signed ints, so 32-bit python can't fit an uint32 # in an int. TestGetAndDeserialize('optional_uint32', 1 << 31, integer_64) else: # 64-bit python can fit uint32 inside an int TestGetAndDeserialize('optional_uint32', 1 << 31, int) TestGetAndDeserialize('optional_int64', 1 << 30, integer_64) TestGetAndDeserialize('optional_int64', 1 << 60, integer_64) TestGetAndDeserialize('optional_uint64', 1 << 30, integer_64) TestGetAndDeserialize('optional_uint64', 1 << 60, integer_64) def testIntegerTypes(self): self.assertIntegerTypes(lambda x: x) def testNonStandardIntegerTypes(self): self.assertIntegerTypes(test_util.NonStandardInteger) def testIllegalValuesForIntegers(self): pb = unittest_pb2.TestAllTypes() # Strings are illegal, even when the represent an integer. with self.assertRaises(TypeError): pb.optional_uint64 = '2' # The exact error should propagate with a poorly written custom integer. with self.assertRaisesRegexp(RuntimeError, 'my_error'): pb.optional_uint64 = test_util.NonStandardInteger(5, 'my_error') def assetIntegerBoundsChecking(self, integer_fn): """Verifies bounds checking for scalar integer fields. Args: integer_fn: A function to wrap the integers that will be assigned. """ def TestMinAndMaxIntegers(field_name, expected_min, expected_max): pb = unittest_pb2.TestAllTypes() expected_min = integer_fn(expected_min) expected_max = integer_fn(expected_max) setattr(pb, field_name, expected_min) self.assertEqual(expected_min, getattr(pb, field_name)) setattr(pb, field_name, expected_max) self.assertEqual(expected_max, getattr(pb, field_name)) self.assertRaises((ValueError, TypeError), setattr, pb, field_name, expected_min - 1) self.assertRaises((ValueError, TypeError), setattr, pb, field_name, expected_max + 1) TestMinAndMaxIntegers('optional_int32', -(1 << 31), (1 << 31) - 1) TestMinAndMaxIntegers('optional_uint32', 0, 0xffffffff) TestMinAndMaxIntegers('optional_int64', -(1 << 63), (1 << 63) - 1) TestMinAndMaxIntegers('optional_uint64', 0, 0xffffffffffffffff) # A bit of white-box testing since -1 is an int and not a long in C++ and # so goes down a different path. pb = unittest_pb2.TestAllTypes() with self.assertRaises((ValueError, TypeError)): pb.optional_uint64 = integer_fn(-(1 << 63)) pb = unittest_pb2.TestAllTypes() pb.optional_nested_enum = integer_fn(1) self.assertEqual(1, pb.optional_nested_enum) def testSingleScalarBoundsChecking(self): self.assetIntegerBoundsChecking(lambda x: x) def testNonStandardSingleScalarBoundsChecking(self): self.assetIntegerBoundsChecking(test_util.NonStandardInteger) def testRepeatedScalarTypeSafety(self): proto = unittest_pb2.TestAllTypes() self.assertRaises(TypeError, proto.repeated_int32.append, 1.1) self.assertRaises(TypeError, proto.repeated_int32.append, 'foo') self.assertRaises(TypeError, proto.repeated_string, 10) self.assertRaises(TypeError, proto.repeated_bytes, 10) proto.repeated_int32.append(10) proto.repeated_int32[0] = 23 self.assertRaises(IndexError, proto.repeated_int32.__setitem__, 500, 23) self.assertRaises(TypeError, proto.repeated_int32.__setitem__, 0, 'abc') self.assertRaises(TypeError, proto.repeated_int32.__setitem__, 0, []) self.assertRaises(TypeError, proto.repeated_int32.__setitem__, 'index', 23) proto.repeated_string.append('2') self.assertRaises(TypeError, proto.repeated_string.__setitem__, 0, 10) # Repeated enums tests. #proto.repeated_nested_enum.append(0) def testSingleScalarGettersAndSetters(self): proto = unittest_pb2.TestAllTypes() self.assertEqual(0, proto.optional_int32) proto.optional_int32 = 1 self.assertEqual(1, proto.optional_int32) proto.optional_uint64 = 0xffffffffffff self.assertEqual(0xffffffffffff, proto.optional_uint64) proto.optional_uint64 = 0xffffffffffffffff self.assertEqual(0xffffffffffffffff, proto.optional_uint64) # TODO(robinson): Test all other scalar field types. def testSingleScalarClearField(self): proto = unittest_pb2.TestAllTypes() # Should be allowed to clear something that's not there (a no-op). proto.ClearField('optional_int32') proto.optional_int32 = 1 self.assertTrue(proto.HasField('optional_int32')) proto.ClearField('optional_int32') self.assertEqual(0, proto.optional_int32) self.assertTrue(not proto.HasField('optional_int32')) # TODO(robinson): Test all other scalar field types. def testEnums(self): proto = unittest_pb2.TestAllTypes() self.assertEqual(1, proto.FOO) self.assertEqual(1, unittest_pb2.TestAllTypes.FOO) self.assertEqual(2, proto.BAR) self.assertEqual(2, unittest_pb2.TestAllTypes.BAR) self.assertEqual(3, proto.BAZ) self.assertEqual(3, unittest_pb2.TestAllTypes.BAZ) def testEnum_Name(self): self.assertEqual('FOREIGN_FOO', unittest_pb2.ForeignEnum.Name(unittest_pb2.FOREIGN_FOO)) self.assertEqual('FOREIGN_BAR', unittest_pb2.ForeignEnum.Name(unittest_pb2.FOREIGN_BAR)) self.assertEqual('FOREIGN_BAZ', unittest_pb2.ForeignEnum.Name(unittest_pb2.FOREIGN_BAZ)) self.assertRaises(ValueError, unittest_pb2.ForeignEnum.Name, 11312) proto = unittest_pb2.TestAllTypes() self.assertEqual('FOO', proto.NestedEnum.Name(proto.FOO)) self.assertEqual('FOO', unittest_pb2.TestAllTypes.NestedEnum.Name(proto.FOO)) self.assertEqual('BAR', proto.NestedEnum.Name(proto.BAR)) self.assertEqual('BAR', unittest_pb2.TestAllTypes.NestedEnum.Name(proto.BAR)) self.assertEqual('BAZ', proto.NestedEnum.Name(proto.BAZ)) self.assertEqual('BAZ', unittest_pb2.TestAllTypes.NestedEnum.Name(proto.BAZ)) self.assertRaises(ValueError, proto.NestedEnum.Name, 11312) self.assertRaises(ValueError, unittest_pb2.TestAllTypes.NestedEnum.Name, 11312) def testEnum_Value(self): self.assertEqual(unittest_pb2.FOREIGN_FOO, unittest_pb2.ForeignEnum.Value('FOREIGN_FOO')) self.assertEqual(unittest_pb2.FOREIGN_BAR, unittest_pb2.ForeignEnum.Value('FOREIGN_BAR')) self.assertEqual(unittest_pb2.FOREIGN_BAZ, unittest_pb2.ForeignEnum.Value('FOREIGN_BAZ')) self.assertRaises(ValueError, unittest_pb2.ForeignEnum.Value, 'FO') proto = unittest_pb2.TestAllTypes() self.assertEqual(proto.FOO, proto.NestedEnum.Value('FOO')) self.assertEqual(proto.FOO, unittest_pb2.TestAllTypes.NestedEnum.Value('FOO')) self.assertEqual(proto.BAR, proto.NestedEnum.Value('BAR')) self.assertEqual(proto.BAR, unittest_pb2.TestAllTypes.NestedEnum.Value('BAR')) self.assertEqual(proto.BAZ, proto.NestedEnum.Value('BAZ')) self.assertEqual(proto.BAZ, unittest_pb2.TestAllTypes.NestedEnum.Value('BAZ')) self.assertRaises(ValueError, proto.NestedEnum.Value, 'Foo') self.assertRaises(ValueError, unittest_pb2.TestAllTypes.NestedEnum.Value, 'Foo') def testEnum_KeysAndValues(self): self.assertEqual(['FOREIGN_FOO', 'FOREIGN_BAR', 'FOREIGN_BAZ'], list(unittest_pb2.ForeignEnum.keys())) self.assertEqual([4, 5, 6], list(unittest_pb2.ForeignEnum.values())) self.assertEqual([('FOREIGN_FOO', 4), ('FOREIGN_BAR', 5), ('FOREIGN_BAZ', 6)], list(unittest_pb2.ForeignEnum.items())) proto = unittest_pb2.TestAllTypes() self.assertEqual(['FOO', 'BAR', 'BAZ', 'NEG'], list(proto.NestedEnum.keys())) self.assertEqual([1, 2, 3, -1], list(proto.NestedEnum.values())) self.assertEqual([('FOO', 1), ('BAR', 2), ('BAZ', 3), ('NEG', -1)], list(proto.NestedEnum.items())) def testRepeatedScalars(self): proto = unittest_pb2.TestAllTypes() self.assertTrue(not proto.repeated_int32) self.assertEqual(0, len(proto.repeated_int32)) proto.repeated_int32.append(5) proto.repeated_int32.append(10) proto.repeated_int32.append(15) self.assertTrue(proto.repeated_int32) self.assertEqual(3, len(proto.repeated_int32)) self.assertEqual([5, 10, 15], proto.repeated_int32) # Test single retrieval. self.assertEqual(5, proto.repeated_int32[0]) self.assertEqual(15, proto.repeated_int32[-1]) # Test out-of-bounds indices. self.assertRaises(IndexError, proto.repeated_int32.__getitem__, 1234) self.assertRaises(IndexError, proto.repeated_int32.__getitem__, -1234) # Test incorrect types passed to __getitem__. self.assertRaises(TypeError, proto.repeated_int32.__getitem__, 'foo') self.assertRaises(TypeError, proto.repeated_int32.__getitem__, None) # Test single assignment. proto.repeated_int32[1] = 20 self.assertEqual([5, 20, 15], proto.repeated_int32) # Test insertion. proto.repeated_int32.insert(1, 25) self.assertEqual([5, 25, 20, 15], proto.repeated_int32) # Test slice retrieval. proto.repeated_int32.append(30) self.assertEqual([25, 20, 15], proto.repeated_int32[1:4]) self.assertEqual([5, 25, 20, 15, 30], proto.repeated_int32[:]) # Test slice assignment with an iterator proto.repeated_int32[1:4] = (i for i in range(3)) self.assertEqual([5, 0, 1, 2, 30], proto.repeated_int32) # Test slice assignment. proto.repeated_int32[1:4] = [35, 40, 45] self.assertEqual([5, 35, 40, 45, 30], proto.repeated_int32) # Test that we can use the field as an iterator. result = [] for i in proto.repeated_int32: result.append(i) self.assertEqual([5, 35, 40, 45, 30], result) # Test single deletion. del proto.repeated_int32[2] self.assertEqual([5, 35, 45, 30], proto.repeated_int32) # Test slice deletion. del proto.repeated_int32[2:] self.assertEqual([5, 35], proto.repeated_int32) # Test extending. proto.repeated_int32.extend([3, 13]) self.assertEqual([5, 35, 3, 13], proto.repeated_int32) # Test clearing. proto.ClearField('repeated_int32') self.assertTrue(not proto.repeated_int32) self.assertEqual(0, len(proto.repeated_int32)) proto.repeated_int32.append(1) self.assertEqual(1, proto.repeated_int32[-1]) # Test assignment to a negative index. proto.repeated_int32[-1] = 2 self.assertEqual(2, proto.repeated_int32[-1]) # Test deletion at negative indices. proto.repeated_int32[:] = [0, 1, 2, 3] del proto.repeated_int32[-1] self.assertEqual([0, 1, 2], proto.repeated_int32) del proto.repeated_int32[-2] self.assertEqual([0, 2], proto.repeated_int32) self.assertRaises(IndexError, proto.repeated_int32.__delitem__, -3) self.assertRaises(IndexError, proto.repeated_int32.__delitem__, 300) del proto.repeated_int32[-2:-1] self.assertEqual([2], proto.repeated_int32) del proto.repeated_int32[100:10000] self.assertEqual([2], proto.repeated_int32) def testRepeatedScalarsRemove(self): proto = unittest_pb2.TestAllTypes() self.assertTrue(not proto.repeated_int32) self.assertEqual(0, len(proto.repeated_int32)) proto.repeated_int32.append(5) proto.repeated_int32.append(10) proto.repeated_int32.append(5) proto.repeated_int32.append(5) self.assertEqual(4, len(proto.repeated_int32)) proto.repeated_int32.remove(5) self.assertEqual(3, len(proto.repeated_int32)) self.assertEqual(10, proto.repeated_int32[0]) self.assertEqual(5, proto.repeated_int32[1]) self.assertEqual(5, proto.repeated_int32[2]) proto.repeated_int32.remove(5) self.assertEqual(2, len(proto.repeated_int32)) self.assertEqual(10, proto.repeated_int32[0]) self.assertEqual(5, proto.repeated_int32[1]) proto.repeated_int32.remove(10) self.assertEqual(1, len(proto.repeated_int32)) self.assertEqual(5, proto.repeated_int32[0]) # Remove a non-existent element. self.assertRaises(ValueError, proto.repeated_int32.remove, 123) def testRepeatedComposites(self): proto = unittest_pb2.TestAllTypes() self.assertTrue(not proto.repeated_nested_message) self.assertEqual(0, len(proto.repeated_nested_message)) m0 = proto.repeated_nested_message.add() m1 = proto.repeated_nested_message.add() self.assertTrue(proto.repeated_nested_message) self.assertEqual(2, len(proto.repeated_nested_message)) self.assertListsEqual([m0, m1], proto.repeated_nested_message) self.assertIsInstance(m0, unittest_pb2.TestAllTypes.NestedMessage) # Test out-of-bounds indices. self.assertRaises(IndexError, proto.repeated_nested_message.__getitem__, 1234) self.assertRaises(IndexError, proto.repeated_nested_message.__getitem__, -1234) # Test incorrect types passed to __getitem__. self.assertRaises(TypeError, proto.repeated_nested_message.__getitem__, 'foo') self.assertRaises(TypeError, proto.repeated_nested_message.__getitem__, None) # Test slice retrieval. m2 = proto.repeated_nested_message.add() m3 = proto.repeated_nested_message.add() m4 = proto.repeated_nested_message.add() self.assertListsEqual( [m1, m2, m3], proto.repeated_nested_message[1:4]) self.assertListsEqual( [m0, m1, m2, m3, m4], proto.repeated_nested_message[:]) self.assertListsEqual( [m0, m1], proto.repeated_nested_message[:2]) self.assertListsEqual( [m2, m3, m4], proto.repeated_nested_message[2:]) self.assertEqual( m0, proto.repeated_nested_message[0]) self.assertListsEqual( [m0], proto.repeated_nested_message[:1]) # Test that we can use the field as an iterator. result = [] for i in proto.repeated_nested_message: result.append(i) self.assertListsEqual([m0, m1, m2, m3, m4], result) # Test single deletion. del proto.repeated_nested_message[2] self.assertListsEqual([m0, m1, m3, m4], proto.repeated_nested_message) # Test slice deletion. del proto.repeated_nested_message[2:] self.assertListsEqual([m0, m1], proto.repeated_nested_message) # Test extending. n1 = unittest_pb2.TestAllTypes.NestedMessage(bb=1) n2 = unittest_pb2.TestAllTypes.NestedMessage(bb=2) proto.repeated_nested_message.extend([n1,n2]) self.assertEqual(4, len(proto.repeated_nested_message)) self.assertEqual(n1, proto.repeated_nested_message[2]) self.assertEqual(n2, proto.repeated_nested_message[3]) self.assertRaises(TypeError, proto.repeated_nested_message.extend, n1) self.assertRaises(TypeError, proto.repeated_nested_message.extend, [0]) wrong_message_type = unittest_pb2.TestAllTypes() self.assertRaises(TypeError, proto.repeated_nested_message.extend, [wrong_message_type]) # Test clearing. proto.ClearField('repeated_nested_message') self.assertTrue(not proto.repeated_nested_message) self.assertEqual(0, len(proto.repeated_nested_message)) # Test constructing an element while adding it. proto.repeated_nested_message.add(bb=23) self.assertEqual(1, len(proto.repeated_nested_message)) self.assertEqual(23, proto.repeated_nested_message[0].bb) self.assertRaises(TypeError, proto.repeated_nested_message.add, 23) with self.assertRaises(Exception): proto.repeated_nested_message[0] = 23 def testRepeatedCompositeRemove(self): proto = unittest_pb2.TestAllTypes() self.assertEqual(0, len(proto.repeated_nested_message)) m0 = proto.repeated_nested_message.add() # Need to set some differentiating variable so m0 != m1 != m2: m0.bb = len(proto.repeated_nested_message) m1 = proto.repeated_nested_message.add() m1.bb = len(proto.repeated_nested_message) self.assertTrue(m0 != m1) m2 = proto.repeated_nested_message.add() m2.bb = len(proto.repeated_nested_message) self.assertListsEqual([m0, m1, m2], proto.repeated_nested_message) self.assertEqual(3, len(proto.repeated_nested_message)) proto.repeated_nested_message.remove(m0) self.assertEqual(2, len(proto.repeated_nested_message)) self.assertEqual(m1, proto.repeated_nested_message[0]) self.assertEqual(m2, proto.repeated_nested_message[1]) # Removing m0 again or removing None should raise error self.assertRaises(ValueError, proto.repeated_nested_message.remove, m0) self.assertRaises(ValueError, proto.repeated_nested_message.remove, None) self.assertEqual(2, len(proto.repeated_nested_message)) proto.repeated_nested_message.remove(m2) self.assertEqual(1, len(proto.repeated_nested_message)) self.assertEqual(m1, proto.repeated_nested_message[0]) def testHandWrittenReflection(self): # Hand written extensions are only supported by the pure-Python # implementation of the API. if api_implementation.Type() != 'python': return FieldDescriptor = descriptor.FieldDescriptor foo_field_descriptor = FieldDescriptor( name='foo_field', full_name='MyProto.foo_field', index=0, number=1, type=FieldDescriptor.TYPE_INT64, cpp_type=FieldDescriptor.CPPTYPE_INT64, label=FieldDescriptor.LABEL_OPTIONAL, default_value=0, containing_type=None, message_type=None, enum_type=None, is_extension=False, extension_scope=None, options=descriptor_pb2.FieldOptions()) mydescriptor = descriptor.Descriptor( name='MyProto', full_name='MyProto', filename='ignored', containing_type=None, nested_types=[], enum_types=[], fields=[foo_field_descriptor], extensions=[], options=descriptor_pb2.MessageOptions()) class MyProtoClass(six.with_metaclass(reflection.GeneratedProtocolMessageType, message.Message)): DESCRIPTOR = mydescriptor myproto_instance = MyProtoClass() self.assertEqual(0, myproto_instance.foo_field) self.assertTrue(not myproto_instance.HasField('foo_field')) myproto_instance.foo_field = 23 self.assertEqual(23, myproto_instance.foo_field) self.assertTrue(myproto_instance.HasField('foo_field')) def testDescriptorProtoSupport(self): # Hand written descriptors/reflection are only supported by the pure-Python # implementation of the API. if api_implementation.Type() != 'python': return def AddDescriptorField(proto, field_name, field_type): AddDescriptorField.field_index += 1 new_field = proto.field.add() new_field.name = field_name new_field.type = field_type new_field.number = AddDescriptorField.field_index new_field.label = descriptor_pb2.FieldDescriptorProto.LABEL_OPTIONAL AddDescriptorField.field_index = 0 desc_proto = descriptor_pb2.DescriptorProto() desc_proto.name = 'Car' fdp = descriptor_pb2.FieldDescriptorProto AddDescriptorField(desc_proto, 'name', fdp.TYPE_STRING) AddDescriptorField(desc_proto, 'year', fdp.TYPE_INT64) AddDescriptorField(desc_proto, 'automatic', fdp.TYPE_BOOL) AddDescriptorField(desc_proto, 'price', fdp.TYPE_DOUBLE) # Add a repeated field AddDescriptorField.field_index += 1 new_field = desc_proto.field.add() new_field.name = 'owners' new_field.type = fdp.TYPE_STRING new_field.number = AddDescriptorField.field_index new_field.label = descriptor_pb2.FieldDescriptorProto.LABEL_REPEATED desc = descriptor.MakeDescriptor(desc_proto) self.assertTrue('name' in desc.fields_by_name) self.assertTrue('year' in desc.fields_by_name) self.assertTrue('automatic' in desc.fields_by_name) self.assertTrue('price' in desc.fields_by_name) self.assertTrue('owners' in desc.fields_by_name) class CarMessage(six.with_metaclass(reflection.GeneratedProtocolMessageType, message.Message)): DESCRIPTOR = desc prius = CarMessage() prius.name = 'prius' prius.year = 2010 prius.automatic = True prius.price = 25134.75 prius.owners.extend(['bob', 'susan']) serialized_prius = prius.SerializeToString() new_prius = reflection.ParseMessage(desc, serialized_prius) self.assertTrue(new_prius is not prius) self.assertEqual(prius, new_prius) # these are unnecessary assuming message equality works as advertised but # explicitly check to be safe since we're mucking about in metaclass foo self.assertEqual(prius.name, new_prius.name) self.assertEqual(prius.year, new_prius.year) self.assertEqual(prius.automatic, new_prius.automatic) self.assertEqual(prius.price, new_prius.price) self.assertEqual(prius.owners, new_prius.owners) def testTopLevelExtensionsForOptionalScalar(self): extendee_proto = unittest_pb2.TestAllExtensions() extension = unittest_pb2.optional_int32_extension self.assertTrue(not extendee_proto.HasExtension(extension)) self.assertEqual(0, extendee_proto.Extensions[extension]) # As with normal scalar fields, just doing a read doesn't actually set the # "has" bit. self.assertTrue(not extendee_proto.HasExtension(extension)) # Actually set the thing. extendee_proto.Extensions[extension] = 23 self.assertEqual(23, extendee_proto.Extensions[extension]) self.assertTrue(extendee_proto.HasExtension(extension)) # Ensure that clearing works as well. extendee_proto.ClearExtension(extension) self.assertEqual(0, extendee_proto.Extensions[extension]) self.assertTrue(not extendee_proto.HasExtension(extension)) def testTopLevelExtensionsForRepeatedScalar(self): extendee_proto = unittest_pb2.TestAllExtensions() extension = unittest_pb2.repeated_string_extension self.assertEqual(0, len(extendee_proto.Extensions[extension])) extendee_proto.Extensions[extension].append('foo') self.assertEqual(['foo'], extendee_proto.Extensions[extension]) string_list = extendee_proto.Extensions[extension] extendee_proto.ClearExtension(extension) self.assertEqual(0, len(extendee_proto.Extensions[extension])) self.assertTrue(string_list is not extendee_proto.Extensions[extension]) # Shouldn't be allowed to do Extensions[extension] = 'a' self.assertRaises(TypeError, operator.setitem, extendee_proto.Extensions, extension, 'a') def testTopLevelExtensionsForOptionalMessage(self): extendee_proto = unittest_pb2.TestAllExtensions() extension = unittest_pb2.optional_foreign_message_extension self.assertTrue(not extendee_proto.HasExtension(extension)) self.assertEqual(0, extendee_proto.Extensions[extension].c) # As with normal (non-extension) fields, merely reading from the # thing shouldn't set the "has" bit. self.assertTrue(not extendee_proto.HasExtension(extension)) extendee_proto.Extensions[extension].c = 23 self.assertEqual(23, extendee_proto.Extensions[extension].c) self.assertTrue(extendee_proto.HasExtension(extension)) # Save a reference here. foreign_message = extendee_proto.Extensions[extension] extendee_proto.ClearExtension(extension) self.assertTrue(foreign_message is not extendee_proto.Extensions[extension]) # Setting a field on foreign_message now shouldn't set # any "has" bits on extendee_proto. foreign_message.c = 42 self.assertEqual(42, foreign_message.c) self.assertTrue(foreign_message.HasField('c')) self.assertTrue(not extendee_proto.HasExtension(extension)) # Shouldn't be allowed to do Extensions[extension] = 'a' self.assertRaises(TypeError, operator.setitem, extendee_proto.Extensions, extension, 'a') def testTopLevelExtensionsForRepeatedMessage(self): extendee_proto = unittest_pb2.TestAllExtensions() extension = unittest_pb2.repeatedgroup_extension self.assertEqual(0, len(extendee_proto.Extensions[extension])) group = extendee_proto.Extensions[extension].add() group.a = 23 self.assertEqual(23, extendee_proto.Extensions[extension][0].a) group.a = 42 self.assertEqual(42, extendee_proto.Extensions[extension][0].a) group_list = extendee_proto.Extensions[extension] extendee_proto.ClearExtension(extension) self.assertEqual(0, len(extendee_proto.Extensions[extension])) self.assertTrue(group_list is not extendee_proto.Extensions[extension]) # Shouldn't be allowed to do Extensions[extension] = 'a' self.assertRaises(TypeError, operator.setitem, extendee_proto.Extensions, extension, 'a') def testNestedExtensions(self): extendee_proto = unittest_pb2.TestAllExtensions() extension = unittest_pb2.TestRequired.single # We just test the non-repeated case. self.assertTrue(not extendee_proto.HasExtension(extension)) required = extendee_proto.Extensions[extension] self.assertEqual(0, required.a) self.assertTrue(not extendee_proto.HasExtension(extension)) required.a = 23 self.assertEqual(23, extendee_proto.Extensions[extension].a) self.assertTrue(extendee_proto.HasExtension(extension)) extendee_proto.ClearExtension(extension) self.assertTrue(required is not extendee_proto.Extensions[extension]) self.assertTrue(not extendee_proto.HasExtension(extension)) def testRegisteredExtensions(self): pool = unittest_pb2.DESCRIPTOR.pool self.assertTrue( pool.FindExtensionByNumber( unittest_pb2.TestAllExtensions.DESCRIPTOR, 1)) self.assertIs( pool.FindExtensionByName( 'protobuf_unittest.optional_int32_extension').containing_type, unittest_pb2.TestAllExtensions.DESCRIPTOR) # Make sure extensions haven't been registered into types that shouldn't # have any. self.assertEqual(0, len( pool.FindAllExtensions(unittest_pb2.TestAllTypes.DESCRIPTOR))) # If message A directly contains message B, and # a.HasField('b') is currently False, then mutating any # extension in B should change a.HasField('b') to True # (and so on up the object tree). def testHasBitsForAncestorsOfExtendedMessage(self): # Optional scalar extension. toplevel = more_extensions_pb2.TopLevelMessage() self.assertTrue(not toplevel.HasField('submessage')) self.assertEqual(0, toplevel.submessage.Extensions[ more_extensions_pb2.optional_int_extension]) self.assertTrue(not toplevel.HasField('submessage')) toplevel.submessage.Extensions[ more_extensions_pb2.optional_int_extension] = 23 self.assertEqual(23, toplevel.submessage.Extensions[ more_extensions_pb2.optional_int_extension]) self.assertTrue(toplevel.HasField('submessage')) # Repeated scalar extension. toplevel = more_extensions_pb2.TopLevelMessage() self.assertTrue(not toplevel.HasField('submessage')) self.assertEqual([], toplevel.submessage.Extensions[ more_extensions_pb2.repeated_int_extension]) self.assertTrue(not toplevel.HasField('submessage')) toplevel.submessage.Extensions[ more_extensions_pb2.repeated_int_extension].append(23) self.assertEqual([23], toplevel.submessage.Extensions[ more_extensions_pb2.repeated_int_extension]) self.assertTrue(toplevel.HasField('submessage')) # Optional message extension. toplevel = more_extensions_pb2.TopLevelMessage() self.assertTrue(not toplevel.HasField('submessage')) self.assertEqual(0, toplevel.submessage.Extensions[ more_extensions_pb2.optional_message_extension].foreign_message_int) self.assertTrue(not toplevel.HasField('submessage')) toplevel.submessage.Extensions[ more_extensions_pb2.optional_message_extension].foreign_message_int = 23 self.assertEqual(23, toplevel.submessage.Extensions[ more_extensions_pb2.optional_message_extension].foreign_message_int) self.assertTrue(toplevel.HasField('submessage')) # Repeated message extension. toplevel = more_extensions_pb2.TopLevelMessage() self.assertTrue(not toplevel.HasField('submessage')) self.assertEqual(0, len(toplevel.submessage.Extensions[ more_extensions_pb2.repeated_message_extension])) self.assertTrue(not toplevel.HasField('submessage')) foreign = toplevel.submessage.Extensions[ more_extensions_pb2.repeated_message_extension].add() self.assertEqual(foreign, toplevel.submessage.Extensions[ more_extensions_pb2.repeated_message_extension][0]) self.assertTrue(toplevel.HasField('submessage')) def testDisconnectionAfterClearingEmptyMessage(self): toplevel = more_extensions_pb2.TopLevelMessage() extendee_proto = toplevel.submessage extension = more_extensions_pb2.optional_message_extension extension_proto = extendee_proto.Extensions[extension] extendee_proto.ClearExtension(extension) extension_proto.foreign_message_int = 23 self.assertTrue(extension_proto is not extendee_proto.Extensions[extension]) def testExtensionFailureModes(self): extendee_proto = unittest_pb2.TestAllExtensions() # Try non-extension-handle arguments to HasExtension, # ClearExtension(), and Extensions[]... self.assertRaises(KeyError, extendee_proto.HasExtension, 1234) self.assertRaises(KeyError, extendee_proto.ClearExtension, 1234) self.assertRaises(KeyError, extendee_proto.Extensions.__getitem__, 1234) self.assertRaises(KeyError, extendee_proto.Extensions.__setitem__, 1234, 5) # Try something that *is* an extension handle, just not for # this message... for unknown_handle in (more_extensions_pb2.optional_int_extension, more_extensions_pb2.optional_message_extension, more_extensions_pb2.repeated_int_extension, more_extensions_pb2.repeated_message_extension): self.assertRaises(KeyError, extendee_proto.HasExtension, unknown_handle) self.assertRaises(KeyError, extendee_proto.ClearExtension, unknown_handle) self.assertRaises(KeyError, extendee_proto.Extensions.__getitem__, unknown_handle) self.assertRaises(KeyError, extendee_proto.Extensions.__setitem__, unknown_handle, 5) # Try call HasExtension() with a valid handle, but for a # *repeated* field. (Just as with non-extension repeated # fields, Has*() isn't supported for extension repeated fields). self.assertRaises(KeyError, extendee_proto.HasExtension, unittest_pb2.repeated_string_extension) def testStaticParseFrom(self): proto1 = unittest_pb2.TestAllTypes() test_util.SetAllFields(proto1) string1 = proto1.SerializeToString() proto2 = unittest_pb2.TestAllTypes.FromString(string1) # Messages should be equal. self.assertEqual(proto2, proto1) def testMergeFromSingularField(self): # Test merge with just a singular field. proto1 = unittest_pb2.TestAllTypes() proto1.optional_int32 = 1 proto2 = unittest_pb2.TestAllTypes() # This shouldn't get overwritten. proto2.optional_string = 'value' proto2.MergeFrom(proto1) self.assertEqual(1, proto2.optional_int32) self.assertEqual('value', proto2.optional_string) def testMergeFromRepeatedField(self): # Test merge with just a repeated field. proto1 = unittest_pb2.TestAllTypes() proto1.repeated_int32.append(1) proto1.repeated_int32.append(2) proto2 = unittest_pb2.TestAllTypes() proto2.repeated_int32.append(0) proto2.MergeFrom(proto1) self.assertEqual(0, proto2.repeated_int32[0]) self.assertEqual(1, proto2.repeated_int32[1]) self.assertEqual(2, proto2.repeated_int32[2]) def testMergeFromOptionalGroup(self): # Test merge with an optional group. proto1 = unittest_pb2.TestAllTypes() proto1.optionalgroup.a = 12 proto2 = unittest_pb2.TestAllTypes() proto2.MergeFrom(proto1) self.assertEqual(12, proto2.optionalgroup.a) def testMergeFromRepeatedNestedMessage(self): # Test merge with a repeated nested message. proto1 = unittest_pb2.TestAllTypes() m = proto1.repeated_nested_message.add() m.bb = 123 m = proto1.repeated_nested_message.add() m.bb = 321 proto2 = unittest_pb2.TestAllTypes() m = proto2.repeated_nested_message.add() m.bb = 999 proto2.MergeFrom(proto1) self.assertEqual(999, proto2.repeated_nested_message[0].bb) self.assertEqual(123, proto2.repeated_nested_message[1].bb) self.assertEqual(321, proto2.repeated_nested_message[2].bb) proto3 = unittest_pb2.TestAllTypes() proto3.repeated_nested_message.MergeFrom(proto2.repeated_nested_message) self.assertEqual(999, proto3.repeated_nested_message[0].bb) self.assertEqual(123, proto3.repeated_nested_message[1].bb) self.assertEqual(321, proto3.repeated_nested_message[2].bb) def testMergeFromAllFields(self): # With all fields set. proto1 = unittest_pb2.TestAllTypes() test_util.SetAllFields(proto1) proto2 = unittest_pb2.TestAllTypes() proto2.MergeFrom(proto1) # Messages should be equal. self.assertEqual(proto2, proto1) # Serialized string should be equal too. string1 = proto1.SerializeToString() string2 = proto2.SerializeToString() self.assertEqual(string1, string2) def testMergeFromExtensionsSingular(self): proto1 = unittest_pb2.TestAllExtensions() proto1.Extensions[unittest_pb2.optional_int32_extension] = 1 proto2 = unittest_pb2.TestAllExtensions() proto2.MergeFrom(proto1) self.assertEqual( 1, proto2.Extensions[unittest_pb2.optional_int32_extension]) def testMergeFromExtensionsRepeated(self): proto1 = unittest_pb2.TestAllExtensions() proto1.Extensions[unittest_pb2.repeated_int32_extension].append(1) proto1.Extensions[unittest_pb2.repeated_int32_extension].append(2) proto2 = unittest_pb2.TestAllExtensions() proto2.Extensions[unittest_pb2.repeated_int32_extension].append(0) proto2.MergeFrom(proto1) self.assertEqual( 3, len(proto2.Extensions[unittest_pb2.repeated_int32_extension])) self.assertEqual( 0, proto2.Extensions[unittest_pb2.repeated_int32_extension][0]) self.assertEqual( 1, proto2.Extensions[unittest_pb2.repeated_int32_extension][1]) self.assertEqual( 2, proto2.Extensions[unittest_pb2.repeated_int32_extension][2]) def testMergeFromExtensionsNestedMessage(self): proto1 = unittest_pb2.TestAllExtensions() ext1 = proto1.Extensions[ unittest_pb2.repeated_nested_message_extension] m = ext1.add() m.bb = 222 m = ext1.add() m.bb = 333 proto2 = unittest_pb2.TestAllExtensions() ext2 = proto2.Extensions[ unittest_pb2.repeated_nested_message_extension] m = ext2.add() m.bb = 111 proto2.MergeFrom(proto1) ext2 = proto2.Extensions[ unittest_pb2.repeated_nested_message_extension] self.assertEqual(3, len(ext2)) self.assertEqual(111, ext2[0].bb) self.assertEqual(222, ext2[1].bb) self.assertEqual(333, ext2[2].bb) def testMergeFromBug(self): message1 = unittest_pb2.TestAllTypes() message2 = unittest_pb2.TestAllTypes() # Cause optional_nested_message to be instantiated within message1, even # though it is not considered to be "present". message1.optional_nested_message self.assertFalse(message1.HasField('optional_nested_message')) # Merge into message2. This should not instantiate the field is message2. message2.MergeFrom(message1) self.assertFalse(message2.HasField('optional_nested_message')) def testCopyFromSingularField(self): # Test copy with just a singular field. proto1 = unittest_pb2.TestAllTypes() proto1.optional_int32 = 1 proto1.optional_string = 'important-text' proto2 = unittest_pb2.TestAllTypes() proto2.optional_string = 'value' proto2.CopyFrom(proto1) self.assertEqual(1, proto2.optional_int32) self.assertEqual('important-text', proto2.optional_string) def testCopyFromRepeatedField(self): # Test copy with a repeated field. proto1 = unittest_pb2.TestAllTypes() proto1.repeated_int32.append(1) proto1.repeated_int32.append(2) proto2 = unittest_pb2.TestAllTypes() proto2.repeated_int32.append(0) proto2.CopyFrom(proto1) self.assertEqual(1, proto2.repeated_int32[0]) self.assertEqual(2, proto2.repeated_int32[1]) def testCopyFromAllFields(self): # With all fields set. proto1 = unittest_pb2.TestAllTypes() test_util.SetAllFields(proto1) proto2 = unittest_pb2.TestAllTypes() proto2.CopyFrom(proto1) # Messages should be equal. self.assertEqual(proto2, proto1) # Serialized string should be equal too. string1 = proto1.SerializeToString() string2 = proto2.SerializeToString() self.assertEqual(string1, string2) def testCopyFromSelf(self): proto1 = unittest_pb2.TestAllTypes() proto1.repeated_int32.append(1) proto1.optional_int32 = 2 proto1.optional_string = 'important-text' proto1.CopyFrom(proto1) self.assertEqual(1, proto1.repeated_int32[0]) self.assertEqual(2, proto1.optional_int32) self.assertEqual('important-text', proto1.optional_string) def testCopyFromBadType(self): # The python implementation doesn't raise an exception in this # case. In theory it should. if api_implementation.Type() == 'python': return proto1 = unittest_pb2.TestAllTypes() proto2 = unittest_pb2.TestAllExtensions() self.assertRaises(TypeError, proto1.CopyFrom, proto2) def testDeepCopy(self): proto1 = unittest_pb2.TestAllTypes() proto1.optional_int32 = 1 proto2 = copy.deepcopy(proto1) self.assertEqual(1, proto2.optional_int32) proto1.repeated_int32.append(2) proto1.repeated_int32.append(3) container = copy.deepcopy(proto1.repeated_int32) self.assertEqual([2, 3], container) message1 = proto1.repeated_nested_message.add() message1.bb = 1 messages = copy.deepcopy(proto1.repeated_nested_message) self.assertEqual(proto1.repeated_nested_message, messages) message1.bb = 2 self.assertNotEqual(proto1.repeated_nested_message, messages) # TODO(anuraag): Implement deepcopy for extension dict def testClear(self): proto = unittest_pb2.TestAllTypes() # C++ implementation does not support lazy fields right now so leave it # out for now. if api_implementation.Type() == 'python': test_util.SetAllFields(proto) else: test_util.SetAllNonLazyFields(proto) # Clear the message. proto.Clear() self.assertEqual(proto.ByteSize(), 0) empty_proto = unittest_pb2.TestAllTypes() self.assertEqual(proto, empty_proto) # Test if extensions which were set are cleared. proto = unittest_pb2.TestAllExtensions() test_util.SetAllExtensions(proto) # Clear the message. proto.Clear() self.assertEqual(proto.ByteSize(), 0) empty_proto = unittest_pb2.TestAllExtensions() self.assertEqual(proto, empty_proto) def testDisconnectingBeforeClear(self): proto = unittest_pb2.TestAllTypes() nested = proto.optional_nested_message proto.Clear() self.assertTrue(nested is not proto.optional_nested_message) nested.bb = 23 self.assertTrue(not proto.HasField('optional_nested_message')) self.assertEqual(0, proto.optional_nested_message.bb) proto = unittest_pb2.TestAllTypes() nested = proto.optional_nested_message nested.bb = 5 foreign = proto.optional_foreign_message foreign.c = 6 proto.Clear() self.assertTrue(nested is not proto.optional_nested_message) self.assertTrue(foreign is not proto.optional_foreign_message) self.assertEqual(5, nested.bb) self.assertEqual(6, foreign.c) nested.bb = 15 foreign.c = 16 self.assertFalse(proto.HasField('optional_nested_message')) self.assertEqual(0, proto.optional_nested_message.bb) self.assertFalse(proto.HasField('optional_foreign_message')) self.assertEqual(0, proto.optional_foreign_message.c) def testDisconnectingInOneof(self): m = unittest_pb2.TestOneof2() # This message has two messages in a oneof. m.foo_message.qux_int = 5 sub_message = m.foo_message # Accessing another message's field does not clear the first one self.assertEqual(m.foo_lazy_message.qux_int, 0) self.assertEqual(m.foo_message.qux_int, 5) # But mutating another message in the oneof detaches the first one. m.foo_lazy_message.qux_int = 6 self.assertEqual(m.foo_message.qux_int, 0) # The reference we got above was detached and is still valid. self.assertEqual(sub_message.qux_int, 5) sub_message.qux_int = 7 def testOneOf(self): proto = unittest_pb2.TestAllTypes() proto.oneof_uint32 = 10 proto.oneof_nested_message.bb = 11 self.assertEqual(11, proto.oneof_nested_message.bb) self.assertFalse(proto.HasField('oneof_uint32')) nested = proto.oneof_nested_message proto.oneof_string = 'abc' self.assertEqual('abc', proto.oneof_string) self.assertEqual(11, nested.bb) self.assertFalse(proto.HasField('oneof_nested_message')) def assertInitialized(self, proto): self.assertTrue(proto.IsInitialized()) # Neither method should raise an exception. proto.SerializeToString() proto.SerializePartialToString() def assertNotInitialized(self, proto, error_size=None): errors = [] self.assertFalse(proto.IsInitialized()) self.assertFalse(proto.IsInitialized(errors)) self.assertEqual(error_size, len(errors)) self.assertRaises(message.EncodeError, proto.SerializeToString) # "Partial" serialization doesn't care if message is uninitialized. proto.SerializePartialToString() def testIsInitialized(self): # Trivial cases - all optional fields and extensions. proto = unittest_pb2.TestAllTypes() self.assertInitialized(proto) proto = unittest_pb2.TestAllExtensions() self.assertInitialized(proto) # The case of uninitialized required fields. proto = unittest_pb2.TestRequired() self.assertNotInitialized(proto, 3) proto.a = proto.b = proto.c = 2 self.assertInitialized(proto) # The case of uninitialized submessage. proto = unittest_pb2.TestRequiredForeign() self.assertInitialized(proto) proto.optional_message.a = 1 self.assertNotInitialized(proto, 2) proto.optional_message.b = 0 proto.optional_message.c = 0 self.assertInitialized(proto) # Uninitialized repeated submessage. message1 = proto.repeated_message.add() self.assertNotInitialized(proto, 3) message1.a = message1.b = message1.c = 0 self.assertInitialized(proto) # Uninitialized repeated group in an extension. proto = unittest_pb2.TestAllExtensions() extension = unittest_pb2.TestRequired.multi message1 = proto.Extensions[extension].add() message2 = proto.Extensions[extension].add() self.assertNotInitialized(proto, 6) message1.a = 1 message1.b = 1 message1.c = 1 self.assertNotInitialized(proto, 3) message2.a = 2 message2.b = 2 message2.c = 2 self.assertInitialized(proto) # Uninitialized nonrepeated message in an extension. proto = unittest_pb2.TestAllExtensions() extension = unittest_pb2.TestRequired.single proto.Extensions[extension].a = 1 self.assertNotInitialized(proto, 2) proto.Extensions[extension].b = 2 proto.Extensions[extension].c = 3 self.assertInitialized(proto) # Try passing an errors list. errors = [] proto = unittest_pb2.TestRequired() self.assertFalse(proto.IsInitialized(errors)) self.assertEqual(errors, ['a', 'b', 'c']) @unittest.skipIf( api_implementation.Type() != 'cpp' or api_implementation.Version() != 2, 'Errors are only available from the most recent C++ implementation.') def testFileDescriptorErrors(self): file_name = 'test_file_descriptor_errors.proto' package_name = 'test_file_descriptor_errors.proto' file_descriptor_proto = descriptor_pb2.FileDescriptorProto() file_descriptor_proto.name = file_name file_descriptor_proto.package = package_name m1 = file_descriptor_proto.message_type.add() m1.name = 'msg1' # Compiles the proto into the C++ descriptor pool descriptor.FileDescriptor( file_name, package_name, serialized_pb=file_descriptor_proto.SerializeToString()) # Add a FileDescriptorProto that has duplicate symbols another_file_name = 'another_test_file_descriptor_errors.proto' file_descriptor_proto.name = another_file_name m2 = file_descriptor_proto.message_type.add() m2.name = 'msg2' with self.assertRaises(TypeError) as cm: descriptor.FileDescriptor( another_file_name, package_name, serialized_pb=file_descriptor_proto.SerializeToString()) self.assertTrue(hasattr(cm, 'exception'), '%s not raised' % getattr(cm.expected, '__name__', cm.expected)) self.assertIn('test_file_descriptor_errors.proto', str(cm.exception)) # Error message will say something about this definition being a # duplicate, though we don't check the message exactly to avoid a # dependency on the C++ logging code. self.assertIn('test_file_descriptor_errors.msg1', str(cm.exception)) def testStringUTF8Encoding(self): proto = unittest_pb2.TestAllTypes() # Assignment of a unicode object to a field of type 'bytes' is not allowed. self.assertRaises(TypeError, setattr, proto, 'optional_bytes', u'unicode object') # Check that the default value is of python's 'unicode' type. self.assertEqual(type(proto.optional_string), six.text_type) proto.optional_string = six.text_type('Testing') self.assertEqual(proto.optional_string, str('Testing')) # Assign a value of type 'str' which can be encoded in UTF-8. proto.optional_string = str('Testing') self.assertEqual(proto.optional_string, six.text_type('Testing')) # Try to assign a 'bytes' object which contains non-UTF-8. self.assertRaises(ValueError, setattr, proto, 'optional_string', b'a\x80a') # No exception: Assign already encoded UTF-8 bytes to a string field. utf8_bytes = u'Тест'.encode('utf-8') proto.optional_string = utf8_bytes # No exception: Assign the a non-ascii unicode object. proto.optional_string = u'Тест' # No exception thrown (normal str assignment containing ASCII). proto.optional_string = 'abc' def testStringUTF8Serialization(self): proto = message_set_extensions_pb2.TestMessageSet() extension_message = message_set_extensions_pb2.TestMessageSetExtension2 extension = extension_message.message_set_extension test_utf8 = u'Тест' test_utf8_bytes = test_utf8.encode('utf-8') # 'Test' in another language, using UTF-8 charset. proto.Extensions[extension].str = test_utf8 # Serialize using the MessageSet wire format (this is specified in the # .proto file). serialized = proto.SerializeToString() # Check byte size. self.assertEqual(proto.ByteSize(), len(serialized)) raw = unittest_mset_pb2.RawMessageSet() bytes_read = raw.MergeFromString(serialized) self.assertEqual(len(serialized), bytes_read) message2 = message_set_extensions_pb2.TestMessageSetExtension2() self.assertEqual(1, len(raw.item)) # Check that the type_id is the same as the tag ID in the .proto file. self.assertEqual(raw.item[0].type_id, 98418634) # Check the actual bytes on the wire. self.assertTrue(raw.item[0].message.endswith(test_utf8_bytes)) bytes_read = message2.MergeFromString(raw.item[0].message) self.assertEqual(len(raw.item[0].message), bytes_read) self.assertEqual(type(message2.str), six.text_type) self.assertEqual(message2.str, test_utf8) # The pure Python API throws an exception on MergeFromString(), # if any of the string fields of the message can't be UTF-8 decoded. # The C++ implementation of the API has no way to check that on # MergeFromString and thus has no way to throw the exception. # # The pure Python API always returns objects of type 'unicode' (UTF-8 # encoded), or 'bytes' (in 7 bit ASCII). badbytes = raw.item[0].message.replace( test_utf8_bytes, len(test_utf8_bytes) * b'\xff') unicode_decode_failed = False try: message2.MergeFromString(badbytes) except UnicodeDecodeError: unicode_decode_failed = True string_field = message2.str self.assertTrue(unicode_decode_failed or type(string_field) is bytes) def testBytesInTextFormat(self): proto = unittest_pb2.TestAllTypes(optional_bytes=b'\x00\x7f\x80\xff') self.assertEqual(u'optional_bytes: "\\000\\177\\200\\377"\n', six.text_type(proto)) def testEmptyNestedMessage(self): proto = unittest_pb2.TestAllTypes() proto.optional_nested_message.MergeFrom( unittest_pb2.TestAllTypes.NestedMessage()) self.assertTrue(proto.HasField('optional_nested_message')) proto = unittest_pb2.TestAllTypes() proto.optional_nested_message.CopyFrom( unittest_pb2.TestAllTypes.NestedMessage()) self.assertTrue(proto.HasField('optional_nested_message')) proto = unittest_pb2.TestAllTypes() bytes_read = proto.optional_nested_message.MergeFromString(b'') self.assertEqual(0, bytes_read) self.assertTrue(proto.HasField('optional_nested_message')) proto = unittest_pb2.TestAllTypes() proto.optional_nested_message.ParseFromString(b'') self.assertTrue(proto.HasField('optional_nested_message')) serialized = proto.SerializeToString() proto2 = unittest_pb2.TestAllTypes() self.assertEqual( len(serialized), proto2.MergeFromString(serialized)) self.assertTrue(proto2.HasField('optional_nested_message')) def testSetInParent(self): proto = unittest_pb2.TestAllTypes() self.assertFalse(proto.HasField('optionalgroup')) proto.optionalgroup.SetInParent() self.assertTrue(proto.HasField('optionalgroup')) def testPackageInitializationImport(self): """Test that we can import nested messages from their __init__.py. Such setup is not trivial since at the time of processing of __init__.py one can't refer to its submodules by name in code, so expressions like google.protobuf.internal.import_test_package.inner_pb2 don't work. They do work in imports, so we have assign an alias at import and then use that alias in generated code. """ # We import here since it's the import that used to fail, and we want # the failure to have the right context. # pylint: disable=g-import-not-at-top from google.protobuf.internal import import_test_package # pylint: enable=g-import-not-at-top msg = import_test_package.myproto.Outer() # Just check the default value. self.assertEqual(57, msg.inner.value) # Since we had so many tests for protocol buffer equality, we broke these out # into separate TestCase classes. class TestAllTypesEqualityTest(BaseTestCase): def setUp(self): self.first_proto = unittest_pb2.TestAllTypes() self.second_proto = unittest_pb2.TestAllTypes() def testNotHashable(self): self.assertRaises(TypeError, hash, self.first_proto) def testSelfEquality(self): self.assertEqual(self.first_proto, self.first_proto) def testEmptyProtosEqual(self): self.assertEqual(self.first_proto, self.second_proto) class FullProtosEqualityTest(BaseTestCase): """Equality tests using completely-full protos as a starting point.""" def setUp(self): self.first_proto = unittest_pb2.TestAllTypes() self.second_proto = unittest_pb2.TestAllTypes() test_util.SetAllFields(self.first_proto) test_util.SetAllFields(self.second_proto) def testNotHashable(self): self.assertRaises(TypeError, hash, self.first_proto) def testNoneNotEqual(self): self.assertNotEqual(self.first_proto, None) self.assertNotEqual(None, self.second_proto) def testNotEqualToOtherMessage(self): third_proto = unittest_pb2.TestRequired() self.assertNotEqual(self.first_proto, third_proto) self.assertNotEqual(third_proto, self.second_proto) def testAllFieldsFilledEquality(self): self.assertEqual(self.first_proto, self.second_proto) def testNonRepeatedScalar(self): # Nonrepeated scalar field change should cause inequality. self.first_proto.optional_int32 += 1 self.assertNotEqual(self.first_proto, self.second_proto) # ...as should clearing a field. self.first_proto.ClearField('optional_int32') self.assertNotEqual(self.first_proto, self.second_proto) def testNonRepeatedComposite(self): # Change a nonrepeated composite field. self.first_proto.optional_nested_message.bb += 1 self.assertNotEqual(self.first_proto, self.second_proto) self.first_proto.optional_nested_message.bb -= 1 self.assertEqual(self.first_proto, self.second_proto) # Clear a field in the nested message. self.first_proto.optional_nested_message.ClearField('bb') self.assertNotEqual(self.first_proto, self.second_proto) self.first_proto.optional_nested_message.bb = ( self.second_proto.optional_nested_message.bb) self.assertEqual(self.first_proto, self.second_proto) # Remove the nested message entirely. self.first_proto.ClearField('optional_nested_message') self.assertNotEqual(self.first_proto, self.second_proto) def testRepeatedScalar(self): # Change a repeated scalar field. self.first_proto.repeated_int32.append(5) self.assertNotEqual(self.first_proto, self.second_proto) self.first_proto.ClearField('repeated_int32') self.assertNotEqual(self.first_proto, self.second_proto) def testRepeatedComposite(self): # Change value within a repeated composite field. self.first_proto.repeated_nested_message[0].bb += 1 self.assertNotEqual(self.first_proto, self.second_proto) self.first_proto.repeated_nested_message[0].bb -= 1 self.assertEqual(self.first_proto, self.second_proto) # Add a value to a repeated composite field. self.first_proto.repeated_nested_message.add() self.assertNotEqual(self.first_proto, self.second_proto) self.second_proto.repeated_nested_message.add() self.assertEqual(self.first_proto, self.second_proto) def testNonRepeatedScalarHasBits(self): # Ensure that we test "has" bits as well as value for # nonrepeated scalar field. self.first_proto.ClearField('optional_int32') self.second_proto.optional_int32 = 0 self.assertNotEqual(self.first_proto, self.second_proto) def testNonRepeatedCompositeHasBits(self): # Ensure that we test "has" bits as well as value for # nonrepeated composite field. self.first_proto.ClearField('optional_nested_message') self.second_proto.optional_nested_message.ClearField('bb') self.assertNotEqual(self.first_proto, self.second_proto) self.first_proto.optional_nested_message.bb = 0 self.first_proto.optional_nested_message.ClearField('bb') self.assertEqual(self.first_proto, self.second_proto) class ExtensionEqualityTest(BaseTestCase): def testExtensionEquality(self): first_proto = unittest_pb2.TestAllExtensions() second_proto = unittest_pb2.TestAllExtensions() self.assertEqual(first_proto, second_proto) test_util.SetAllExtensions(first_proto) self.assertNotEqual(first_proto, second_proto) test_util.SetAllExtensions(second_proto) self.assertEqual(first_proto, second_proto) # Ensure that we check value equality. first_proto.Extensions[unittest_pb2.optional_int32_extension] += 1 self.assertNotEqual(first_proto, second_proto) first_proto.Extensions[unittest_pb2.optional_int32_extension] -= 1 self.assertEqual(first_proto, second_proto) # Ensure that we also look at "has" bits. first_proto.ClearExtension(unittest_pb2.optional_int32_extension) second_proto.Extensions[unittest_pb2.optional_int32_extension] = 0 self.assertNotEqual(first_proto, second_proto) first_proto.Extensions[unittest_pb2.optional_int32_extension] = 0 self.assertEqual(first_proto, second_proto) # Ensure that differences in cached values # don't matter if "has" bits are both false. first_proto = unittest_pb2.TestAllExtensions() second_proto = unittest_pb2.TestAllExtensions() self.assertEqual( 0, first_proto.Extensions[unittest_pb2.optional_int32_extension]) self.assertEqual(first_proto, second_proto) class MutualRecursionEqualityTest(BaseTestCase): def testEqualityWithMutualRecursion(self): first_proto = unittest_pb2.TestMutualRecursionA() second_proto = unittest_pb2.TestMutualRecursionA() self.assertEqual(first_proto, second_proto) first_proto.bb.a.bb.optional_int32 = 23 self.assertNotEqual(first_proto, second_proto) second_proto.bb.a.bb.optional_int32 = 23 self.assertEqual(first_proto, second_proto) class ByteSizeTest(BaseTestCase): def setUp(self): self.proto = unittest_pb2.TestAllTypes() self.extended_proto = more_extensions_pb2.ExtendedMessage() self.packed_proto = unittest_pb2.TestPackedTypes() self.packed_extended_proto = unittest_pb2.TestPackedExtensions() def Size(self): return self.proto.ByteSize() def testEmptyMessage(self): self.assertEqual(0, self.proto.ByteSize()) def testSizedOnKwargs(self): # Use a separate message to ensure testing right after creation. proto = unittest_pb2.TestAllTypes() self.assertEqual(0, proto.ByteSize()) proto_kwargs = unittest_pb2.TestAllTypes(optional_int64 = 1) # One byte for the tag, one to encode varint 1. self.assertEqual(2, proto_kwargs.ByteSize()) def testVarints(self): def Test(i, expected_varint_size): self.proto.Clear() self.proto.optional_int64 = i # Add one to the varint size for the tag info # for tag 1. self.assertEqual(expected_varint_size + 1, self.Size()) Test(0, 1) Test(1, 1) for i, num_bytes in zip(range(7, 63, 7), range(1, 10000)): Test((1 << i) - 1, num_bytes) Test(-1, 10) Test(-2, 10) Test(-(1 << 63), 10) def testStrings(self): self.proto.optional_string = '' # Need one byte for tag info (tag #14), and one byte for length. self.assertEqual(2, self.Size()) self.proto.optional_string = 'abc' # Need one byte for tag info (tag #14), and one byte for length. self.assertEqual(2 + len(self.proto.optional_string), self.Size()) self.proto.optional_string = 'x' * 128 # Need one byte for tag info (tag #14), and TWO bytes for length. self.assertEqual(3 + len(self.proto.optional_string), self.Size()) def testOtherNumerics(self): self.proto.optional_fixed32 = 1234 # One byte for tag and 4 bytes for fixed32. self.assertEqual(5, self.Size()) self.proto = unittest_pb2.TestAllTypes() self.proto.optional_fixed64 = 1234 # One byte for tag and 8 bytes for fixed64. self.assertEqual(9, self.Size()) self.proto = unittest_pb2.TestAllTypes() self.proto.optional_float = 1.234 # One byte for tag and 4 bytes for float. self.assertEqual(5, self.Size()) self.proto = unittest_pb2.TestAllTypes() self.proto.optional_double = 1.234 # One byte for tag and 8 bytes for float. self.assertEqual(9, self.Size()) self.proto = unittest_pb2.TestAllTypes() self.proto.optional_sint32 = 64 # One byte for tag and 2 bytes for zig-zag-encoded 64. self.assertEqual(3, self.Size()) self.proto = unittest_pb2.TestAllTypes() def testComposites(self): # 3 bytes. self.proto.optional_nested_message.bb = (1 << 14) # Plus one byte for bb tag. # Plus 1 byte for optional_nested_message serialized size. # Plus two bytes for optional_nested_message tag. self.assertEqual(3 + 1 + 1 + 2, self.Size()) def testGroups(self): # 4 bytes. self.proto.optionalgroup.a = (1 << 21) # Plus two bytes for |a| tag. # Plus 2 * two bytes for START_GROUP and END_GROUP tags. self.assertEqual(4 + 2 + 2*2, self.Size()) def testRepeatedScalars(self): self.proto.repeated_int32.append(10) # 1 byte. self.proto.repeated_int32.append(128) # 2 bytes. # Also need 2 bytes for each entry for tag. self.assertEqual(1 + 2 + 2*2, self.Size()) def testRepeatedScalarsExtend(self): self.proto.repeated_int32.extend([10, 128]) # 3 bytes. # Also need 2 bytes for each entry for tag. self.assertEqual(1 + 2 + 2*2, self.Size()) def testRepeatedScalarsRemove(self): self.proto.repeated_int32.append(10) # 1 byte. self.proto.repeated_int32.append(128) # 2 bytes. # Also need 2 bytes for each entry for tag. self.assertEqual(1 + 2 + 2*2, self.Size()) self.proto.repeated_int32.remove(128) self.assertEqual(1 + 2, self.Size()) def testRepeatedComposites(self): # Empty message. 2 bytes tag plus 1 byte length. foreign_message_0 = self.proto.repeated_nested_message.add() # 2 bytes tag plus 1 byte length plus 1 byte bb tag 1 byte int. foreign_message_1 = self.proto.repeated_nested_message.add() foreign_message_1.bb = 7 self.assertEqual(2 + 1 + 2 + 1 + 1 + 1, self.Size()) def testRepeatedCompositesDelete(self): # Empty message. 2 bytes tag plus 1 byte length. foreign_message_0 = self.proto.repeated_nested_message.add() # 2 bytes tag plus 1 byte length plus 1 byte bb tag 1 byte int. foreign_message_1 = self.proto.repeated_nested_message.add() foreign_message_1.bb = 9 self.assertEqual(2 + 1 + 2 + 1 + 1 + 1, self.Size()) repeated_nested_message = copy.deepcopy( self.proto.repeated_nested_message) # 2 bytes tag plus 1 byte length plus 1 byte bb tag 1 byte int. del self.proto.repeated_nested_message[0] self.assertEqual(2 + 1 + 1 + 1, self.Size()) # Now add a new message. foreign_message_2 = self.proto.repeated_nested_message.add() foreign_message_2.bb = 12 # 2 bytes tag plus 1 byte length plus 1 byte bb tag 1 byte int. # 2 bytes tag plus 1 byte length plus 1 byte bb tag 1 byte int. self.assertEqual(2 + 1 + 1 + 1 + 2 + 1 + 1 + 1, self.Size()) # 2 bytes tag plus 1 byte length plus 1 byte bb tag 1 byte int. del self.proto.repeated_nested_message[1] self.assertEqual(2 + 1 + 1 + 1, self.Size()) del self.proto.repeated_nested_message[0] self.assertEqual(0, self.Size()) self.assertEqual(2, len(repeated_nested_message)) del repeated_nested_message[0:1] # TODO(jieluo): Fix cpp extension bug when delete repeated message. if api_implementation.Type() == 'python': self.assertEqual(1, len(repeated_nested_message)) del repeated_nested_message[-1] # TODO(jieluo): Fix cpp extension bug when delete repeated message. if api_implementation.Type() == 'python': self.assertEqual(0, len(repeated_nested_message)) def testRepeatedGroups(self): # 2-byte START_GROUP plus 2-byte END_GROUP. group_0 = self.proto.repeatedgroup.add() # 2-byte START_GROUP plus 2-byte |a| tag + 1-byte |a| # plus 2-byte END_GROUP. group_1 = self.proto.repeatedgroup.add() group_1.a = 7 self.assertEqual(2 + 2 + 2 + 2 + 1 + 2, self.Size()) def testExtensions(self): proto = unittest_pb2.TestAllExtensions() self.assertEqual(0, proto.ByteSize()) extension = unittest_pb2.optional_int32_extension # Field #1, 1 byte. proto.Extensions[extension] = 23 # 1 byte for tag, 1 byte for value. self.assertEqual(2, proto.ByteSize()) field = unittest_pb2.TestAllTypes.DESCRIPTOR.fields_by_name[ 'optional_int32'] with self.assertRaises(KeyError): proto.Extensions[field] = 23 def testCacheInvalidationForNonrepeatedScalar(self): # Test non-extension. self.proto.optional_int32 = 1 self.assertEqual(2, self.proto.ByteSize()) self.proto.optional_int32 = 128 self.assertEqual(3, self.proto.ByteSize()) self.proto.ClearField('optional_int32') self.assertEqual(0, self.proto.ByteSize()) # Test within extension. extension = more_extensions_pb2.optional_int_extension self.extended_proto.Extensions[extension] = 1 self.assertEqual(2, self.extended_proto.ByteSize()) self.extended_proto.Extensions[extension] = 128 self.assertEqual(3, self.extended_proto.ByteSize()) self.extended_proto.ClearExtension(extension) self.assertEqual(0, self.extended_proto.ByteSize()) def testCacheInvalidationForRepeatedScalar(self): # Test non-extension. self.proto.repeated_int32.append(1) self.assertEqual(3, self.proto.ByteSize()) self.proto.repeated_int32.append(1) self.assertEqual(6, self.proto.ByteSize()) self.proto.repeated_int32[1] = 128 self.assertEqual(7, self.proto.ByteSize()) self.proto.ClearField('repeated_int32') self.assertEqual(0, self.proto.ByteSize()) # Test within extension. extension = more_extensions_pb2.repeated_int_extension repeated = self.extended_proto.Extensions[extension] repeated.append(1) self.assertEqual(2, self.extended_proto.ByteSize()) repeated.append(1) self.assertEqual(4, self.extended_proto.ByteSize()) repeated[1] = 128 self.assertEqual(5, self.extended_proto.ByteSize()) self.extended_proto.ClearExtension(extension) self.assertEqual(0, self.extended_proto.ByteSize()) def testCacheInvalidationForNonrepeatedMessage(self): # Test non-extension. self.proto.optional_foreign_message.c = 1 self.assertEqual(5, self.proto.ByteSize()) self.proto.optional_foreign_message.c = 128 self.assertEqual(6, self.proto.ByteSize()) self.proto.optional_foreign_message.ClearField('c') self.assertEqual(3, self.proto.ByteSize()) self.proto.ClearField('optional_foreign_message') self.assertEqual(0, self.proto.ByteSize()) if api_implementation.Type() == 'python': # This is only possible in pure-Python implementation of the API. child = self.proto.optional_foreign_message self.proto.ClearField('optional_foreign_message') child.c = 128 self.assertEqual(0, self.proto.ByteSize()) # Test within extension. extension = more_extensions_pb2.optional_message_extension child = self.extended_proto.Extensions[extension] self.assertEqual(0, self.extended_proto.ByteSize()) child.foreign_message_int = 1 self.assertEqual(4, self.extended_proto.ByteSize()) child.foreign_message_int = 128 self.assertEqual(5, self.extended_proto.ByteSize()) self.extended_proto.ClearExtension(extension) self.assertEqual(0, self.extended_proto.ByteSize()) def testCacheInvalidationForRepeatedMessage(self): # Test non-extension. child0 = self.proto.repeated_foreign_message.add() self.assertEqual(3, self.proto.ByteSize()) self.proto.repeated_foreign_message.add() self.assertEqual(6, self.proto.ByteSize()) child0.c = 1 self.assertEqual(8, self.proto.ByteSize()) self.proto.ClearField('repeated_foreign_message') self.assertEqual(0, self.proto.ByteSize()) # Test within extension. extension = more_extensions_pb2.repeated_message_extension child_list = self.extended_proto.Extensions[extension] child0 = child_list.add() self.assertEqual(2, self.extended_proto.ByteSize()) child_list.add() self.assertEqual(4, self.extended_proto.ByteSize()) child0.foreign_message_int = 1 self.assertEqual(6, self.extended_proto.ByteSize()) child0.ClearField('foreign_message_int') self.assertEqual(4, self.extended_proto.ByteSize()) self.extended_proto.ClearExtension(extension) self.assertEqual(0, self.extended_proto.ByteSize()) def testPackedRepeatedScalars(self): self.assertEqual(0, self.packed_proto.ByteSize()) self.packed_proto.packed_int32.append(10) # 1 byte. self.packed_proto.packed_int32.append(128) # 2 bytes. # The tag is 2 bytes (the field number is 90), and the varint # storing the length is 1 byte. int_size = 1 + 2 + 3 self.assertEqual(int_size, self.packed_proto.ByteSize()) self.packed_proto.packed_double.append(4.2) # 8 bytes self.packed_proto.packed_double.append(3.25) # 8 bytes # 2 more tag bytes, 1 more length byte. double_size = 8 + 8 + 3 self.assertEqual(int_size+double_size, self.packed_proto.ByteSize()) self.packed_proto.ClearField('packed_int32') self.assertEqual(double_size, self.packed_proto.ByteSize()) def testPackedExtensions(self): self.assertEqual(0, self.packed_extended_proto.ByteSize()) extension = self.packed_extended_proto.Extensions[ unittest_pb2.packed_fixed32_extension] extension.extend([1, 2, 3, 4]) # 16 bytes # Tag is 3 bytes. self.assertEqual(19, self.packed_extended_proto.ByteSize()) # Issues to be sure to cover include: # * Handling of unrecognized tags ("uninterpreted_bytes"). # * Handling of MessageSets. # * Consistent ordering of tags in the wire format, # including ordering between extensions and non-extension # fields. # * Consistent serialization of negative numbers, especially # negative int32s. # * Handling of empty submessages (with and without "has" # bits set). class SerializationTest(BaseTestCase): def testSerializeEmtpyMessage(self): first_proto = unittest_pb2.TestAllTypes() second_proto = unittest_pb2.TestAllTypes() serialized = first_proto.SerializeToString() self.assertEqual(first_proto.ByteSize(), len(serialized)) self.assertEqual( len(serialized), second_proto.MergeFromString(serialized)) self.assertEqual(first_proto, second_proto) def testSerializeAllFields(self): first_proto = unittest_pb2.TestAllTypes() second_proto = unittest_pb2.TestAllTypes() test_util.SetAllFields(first_proto) serialized = first_proto.SerializeToString() self.assertEqual(first_proto.ByteSize(), len(serialized)) self.assertEqual( len(serialized), second_proto.MergeFromString(serialized)) self.assertEqual(first_proto, second_proto) def testSerializeAllExtensions(self): first_proto = unittest_pb2.TestAllExtensions() second_proto = unittest_pb2.TestAllExtensions() test_util.SetAllExtensions(first_proto) serialized = first_proto.SerializeToString() self.assertEqual( len(serialized), second_proto.MergeFromString(serialized)) self.assertEqual(first_proto, second_proto) def testSerializeWithOptionalGroup(self): first_proto = unittest_pb2.TestAllTypes() second_proto = unittest_pb2.TestAllTypes() first_proto.optionalgroup.a = 242 serialized = first_proto.SerializeToString() self.assertEqual( len(serialized), second_proto.MergeFromString(serialized)) self.assertEqual(first_proto, second_proto) def testSerializeNegativeValues(self): first_proto = unittest_pb2.TestAllTypes() first_proto.optional_int32 = -1 first_proto.optional_int64 = -(2 << 40) first_proto.optional_sint32 = -3 first_proto.optional_sint64 = -(4 << 40) first_proto.optional_sfixed32 = -5 first_proto.optional_sfixed64 = -(6 << 40) second_proto = unittest_pb2.TestAllTypes.FromString( first_proto.SerializeToString()) self.assertEqual(first_proto, second_proto) def testParseTruncated(self): # This test is only applicable for the Python implementation of the API. if api_implementation.Type() != 'python': return first_proto = unittest_pb2.TestAllTypes() test_util.SetAllFields(first_proto) serialized = first_proto.SerializeToString() for truncation_point in range(len(serialized) + 1): try: second_proto = unittest_pb2.TestAllTypes() unknown_fields = unittest_pb2.TestEmptyMessage() pos = second_proto._InternalParse(serialized, 0, truncation_point) # If we didn't raise an error then we read exactly the amount expected. self.assertEqual(truncation_point, pos) # Parsing to unknown fields should not throw if parsing to known fields # did not. try: pos2 = unknown_fields._InternalParse(serialized, 0, truncation_point) self.assertEqual(truncation_point, pos2) except message.DecodeError: self.fail('Parsing unknown fields failed when parsing known fields ' 'did not.') except message.DecodeError: # Parsing unknown fields should also fail. self.assertRaises(message.DecodeError, unknown_fields._InternalParse, serialized, 0, truncation_point) def testCanonicalSerializationOrder(self): proto = more_messages_pb2.OutOfOrderFields() # These are also their tag numbers. Even though we're setting these in # reverse-tag order AND they're listed in reverse tag-order in the .proto # file, they should nonetheless be serialized in tag order. proto.optional_sint32 = 5 proto.Extensions[more_messages_pb2.optional_uint64] = 4 proto.optional_uint32 = 3 proto.Extensions[more_messages_pb2.optional_int64] = 2 proto.optional_int32 = 1 serialized = proto.SerializeToString() self.assertEqual(proto.ByteSize(), len(serialized)) d = _MiniDecoder(serialized) ReadTag = d.ReadFieldNumberAndWireType self.assertEqual((1, wire_format.WIRETYPE_VARINT), ReadTag()) self.assertEqual(1, d.ReadInt32()) self.assertEqual((2, wire_format.WIRETYPE_VARINT), ReadTag()) self.assertEqual(2, d.ReadInt64()) self.assertEqual((3, wire_format.WIRETYPE_VARINT), ReadTag()) self.assertEqual(3, d.ReadUInt32()) self.assertEqual((4, wire_format.WIRETYPE_VARINT), ReadTag()) self.assertEqual(4, d.ReadUInt64()) self.assertEqual((5, wire_format.WIRETYPE_VARINT), ReadTag()) self.assertEqual(5, d.ReadSInt32()) def testCanonicalSerializationOrderSameAsCpp(self): # Copy of the same test we use for C++. proto = unittest_pb2.TestFieldOrderings() test_util.SetAllFieldsAndExtensions(proto) serialized = proto.SerializeToString() test_util.ExpectAllFieldsAndExtensionsInOrder(serialized) def testMergeFromStringWhenFieldsAlreadySet(self): first_proto = unittest_pb2.TestAllTypes() first_proto.repeated_string.append('foobar') first_proto.optional_int32 = 23 first_proto.optional_nested_message.bb = 42 serialized = first_proto.SerializeToString() second_proto = unittest_pb2.TestAllTypes() second_proto.repeated_string.append('baz') second_proto.optional_int32 = 100 second_proto.optional_nested_message.bb = 999 bytes_parsed = second_proto.MergeFromString(serialized) self.assertEqual(len(serialized), bytes_parsed) # Ensure that we append to repeated fields. self.assertEqual(['baz', 'foobar'], list(second_proto.repeated_string)) # Ensure that we overwrite nonrepeatd scalars. self.assertEqual(23, second_proto.optional_int32) # Ensure that we recursively call MergeFromString() on # submessages. self.assertEqual(42, second_proto.optional_nested_message.bb) def testMessageSetWireFormat(self): proto = message_set_extensions_pb2.TestMessageSet() extension_message1 = message_set_extensions_pb2.TestMessageSetExtension1 extension_message2 = message_set_extensions_pb2.TestMessageSetExtension2 extension1 = extension_message1.message_set_extension extension2 = extension_message2.message_set_extension extension3 = message_set_extensions_pb2.message_set_extension3 proto.Extensions[extension1].i = 123 proto.Extensions[extension2].str = 'foo' proto.Extensions[extension3].text = 'bar' # Serialize using the MessageSet wire format (this is specified in the # .proto file). serialized = proto.SerializeToString() raw = unittest_mset_pb2.RawMessageSet() self.assertEqual(False, raw.DESCRIPTOR.GetOptions().message_set_wire_format) self.assertEqual( len(serialized), raw.MergeFromString(serialized)) self.assertEqual(3, len(raw.item)) message1 = message_set_extensions_pb2.TestMessageSetExtension1() self.assertEqual( len(raw.item[0].message), message1.MergeFromString(raw.item[0].message)) self.assertEqual(123, message1.i) message2 = message_set_extensions_pb2.TestMessageSetExtension2() self.assertEqual( len(raw.item[1].message), message2.MergeFromString(raw.item[1].message)) self.assertEqual('foo', message2.str) message3 = message_set_extensions_pb2.TestMessageSetExtension3() self.assertEqual( len(raw.item[2].message), message3.MergeFromString(raw.item[2].message)) self.assertEqual('bar', message3.text) # Deserialize using the MessageSet wire format. proto2 = message_set_extensions_pb2.TestMessageSet() self.assertEqual( len(serialized), proto2.MergeFromString(serialized)) self.assertEqual(123, proto2.Extensions[extension1].i) self.assertEqual('foo', proto2.Extensions[extension2].str) self.assertEqual('bar', proto2.Extensions[extension3].text) # Check byte size. self.assertEqual(proto2.ByteSize(), len(serialized)) self.assertEqual(proto.ByteSize(), len(serialized)) def testMessageSetWireFormatUnknownExtension(self): # Create a message using the message set wire format with an unknown # message. raw = unittest_mset_pb2.RawMessageSet() # Add an item. item = raw.item.add() item.type_id = 98418603 extension_message1 = message_set_extensions_pb2.TestMessageSetExtension1 message1 = message_set_extensions_pb2.TestMessageSetExtension1() message1.i = 12345 item.message = message1.SerializeToString() # Add a second, unknown extension. item = raw.item.add() item.type_id = 98418604 extension_message1 = message_set_extensions_pb2.TestMessageSetExtension1 message1 = message_set_extensions_pb2.TestMessageSetExtension1() message1.i = 12346 item.message = message1.SerializeToString() # Add another unknown extension. item = raw.item.add() item.type_id = 98418605 message1 = message_set_extensions_pb2.TestMessageSetExtension2() message1.str = 'foo' item.message = message1.SerializeToString() serialized = raw.SerializeToString() # Parse message using the message set wire format. proto = message_set_extensions_pb2.TestMessageSet() self.assertEqual( len(serialized), proto.MergeFromString(serialized)) # Check that the message parsed well. extension_message1 = message_set_extensions_pb2.TestMessageSetExtension1 extension1 = extension_message1.message_set_extension self.assertEqual(12345, proto.Extensions[extension1].i) def testUnknownFields(self): proto = unittest_pb2.TestAllTypes() test_util.SetAllFields(proto) serialized = proto.SerializeToString() # The empty message should be parsable with all of the fields # unknown. proto2 = unittest_pb2.TestEmptyMessage() # Parsing this message should succeed. self.assertEqual( len(serialized), proto2.MergeFromString(serialized)) # Now test with a int64 field set. proto = unittest_pb2.TestAllTypes() proto.optional_int64 = 0x0fffffffffffffff serialized = proto.SerializeToString() # The empty message should be parsable with all of the fields # unknown. proto2 = unittest_pb2.TestEmptyMessage() # Parsing this message should succeed. self.assertEqual( len(serialized), proto2.MergeFromString(serialized)) def _CheckRaises(self, exc_class, callable_obj, exception): """This method checks if the excpetion type and message are as expected.""" try: callable_obj() except exc_class as ex: # Check if the exception message is the right one. self.assertEqual(exception, str(ex)) return else: raise self.failureException('%s not raised' % str(exc_class)) def testSerializeUninitialized(self): proto = unittest_pb2.TestRequired() self._CheckRaises( message.EncodeError, proto.SerializeToString, 'Message protobuf_unittest.TestRequired is missing required fields: ' 'a,b,c') # Shouldn't raise exceptions. partial = proto.SerializePartialToString() proto2 = unittest_pb2.TestRequired() self.assertFalse(proto2.HasField('a')) # proto2 ParseFromString does not check that required fields are set. proto2.ParseFromString(partial) self.assertFalse(proto2.HasField('a')) proto.a = 1 self._CheckRaises( message.EncodeError, proto.SerializeToString, 'Message protobuf_unittest.TestRequired is missing required fields: b,c') # Shouldn't raise exceptions. partial = proto.SerializePartialToString() proto.b = 2 self._CheckRaises( message.EncodeError, proto.SerializeToString, 'Message protobuf_unittest.TestRequired is missing required fields: c') # Shouldn't raise exceptions. partial = proto.SerializePartialToString() proto.c = 3 serialized = proto.SerializeToString() # Shouldn't raise exceptions. partial = proto.SerializePartialToString() proto2 = unittest_pb2.TestRequired() self.assertEqual( len(serialized), proto2.MergeFromString(serialized)) self.assertEqual(1, proto2.a) self.assertEqual(2, proto2.b) self.assertEqual(3, proto2.c) self.assertEqual( len(partial), proto2.MergeFromString(partial)) self.assertEqual(1, proto2.a) self.assertEqual(2, proto2.b) self.assertEqual(3, proto2.c) def testSerializeUninitializedSubMessage(self): proto = unittest_pb2.TestRequiredForeign() # Sub-message doesn't exist yet, so this succeeds. proto.SerializeToString() proto.optional_message.a = 1 self._CheckRaises( message.EncodeError, proto.SerializeToString, 'Message protobuf_unittest.TestRequiredForeign ' 'is missing required fields: ' 'optional_message.b,optional_message.c') proto.optional_message.b = 2 proto.optional_message.c = 3 proto.SerializeToString() proto.repeated_message.add().a = 1 proto.repeated_message.add().b = 2 self._CheckRaises( message.EncodeError, proto.SerializeToString, 'Message protobuf_unittest.TestRequiredForeign is missing required fields: ' 'repeated_message[0].b,repeated_message[0].c,' 'repeated_message[1].a,repeated_message[1].c') proto.repeated_message[0].b = 2 proto.repeated_message[0].c = 3 proto.repeated_message[1].a = 1 proto.repeated_message[1].c = 3 proto.SerializeToString() def testSerializeAllPackedFields(self): first_proto = unittest_pb2.TestPackedTypes() second_proto = unittest_pb2.TestPackedTypes() test_util.SetAllPackedFields(first_proto) serialized = first_proto.SerializeToString() self.assertEqual(first_proto.ByteSize(), len(serialized)) bytes_read = second_proto.MergeFromString(serialized) self.assertEqual(second_proto.ByteSize(), bytes_read) self.assertEqual(first_proto, second_proto) def testSerializeAllPackedExtensions(self): first_proto = unittest_pb2.TestPackedExtensions() second_proto = unittest_pb2.TestPackedExtensions() test_util.SetAllPackedExtensions(first_proto) serialized = first_proto.SerializeToString() bytes_read = second_proto.MergeFromString(serialized) self.assertEqual(second_proto.ByteSize(), bytes_read) self.assertEqual(first_proto, second_proto) def testMergePackedFromStringWhenSomeFieldsAlreadySet(self): first_proto = unittest_pb2.TestPackedTypes() first_proto.packed_int32.extend([1, 2]) first_proto.packed_double.append(3.0) serialized = first_proto.SerializeToString() second_proto = unittest_pb2.TestPackedTypes() second_proto.packed_int32.append(3) second_proto.packed_double.extend([1.0, 2.0]) second_proto.packed_sint32.append(4) self.assertEqual( len(serialized), second_proto.MergeFromString(serialized)) self.assertEqual([3, 1, 2], second_proto.packed_int32) self.assertEqual([1.0, 2.0, 3.0], second_proto.packed_double) self.assertEqual([4], second_proto.packed_sint32) def testPackedFieldsWireFormat(self): proto = unittest_pb2.TestPackedTypes() proto.packed_int32.extend([1, 2, 150, 3]) # 1 + 1 + 2 + 1 bytes proto.packed_double.extend([1.0, 1000.0]) # 8 + 8 bytes proto.packed_float.append(2.0) # 4 bytes, will be before double serialized = proto.SerializeToString() self.assertEqual(proto.ByteSize(), len(serialized)) d = _MiniDecoder(serialized) ReadTag = d.ReadFieldNumberAndWireType self.assertEqual((90, wire_format.WIRETYPE_LENGTH_DELIMITED), ReadTag()) self.assertEqual(1+1+1+2, d.ReadInt32()) self.assertEqual(1, d.ReadInt32()) self.assertEqual(2, d.ReadInt32()) self.assertEqual(150, d.ReadInt32()) self.assertEqual(3, d.ReadInt32()) self.assertEqual((100, wire_format.WIRETYPE_LENGTH_DELIMITED), ReadTag()) self.assertEqual(4, d.ReadInt32()) self.assertEqual(2.0, d.ReadFloat()) self.assertEqual((101, wire_format.WIRETYPE_LENGTH_DELIMITED), ReadTag()) self.assertEqual(8+8, d.ReadInt32()) self.assertEqual(1.0, d.ReadDouble()) self.assertEqual(1000.0, d.ReadDouble()) self.assertTrue(d.EndOfStream()) def testParsePackedFromUnpacked(self): unpacked = unittest_pb2.TestUnpackedTypes() test_util.SetAllUnpackedFields(unpacked) packed = unittest_pb2.TestPackedTypes() serialized = unpacked.SerializeToString() self.assertEqual( len(serialized), packed.MergeFromString(serialized)) expected = unittest_pb2.TestPackedTypes() test_util.SetAllPackedFields(expected) self.assertEqual(expected, packed) def testParseUnpackedFromPacked(self): packed = unittest_pb2.TestPackedTypes() test_util.SetAllPackedFields(packed) unpacked = unittest_pb2.TestUnpackedTypes() serialized = packed.SerializeToString() self.assertEqual( len(serialized), unpacked.MergeFromString(serialized)) expected = unittest_pb2.TestUnpackedTypes() test_util.SetAllUnpackedFields(expected) self.assertEqual(expected, unpacked) def testFieldNumbers(self): proto = unittest_pb2.TestAllTypes() self.assertEqual(unittest_pb2.TestAllTypes.NestedMessage.BB_FIELD_NUMBER, 1) self.assertEqual(unittest_pb2.TestAllTypes.OPTIONAL_INT32_FIELD_NUMBER, 1) self.assertEqual(unittest_pb2.TestAllTypes.OPTIONALGROUP_FIELD_NUMBER, 16) self.assertEqual( unittest_pb2.TestAllTypes.OPTIONAL_NESTED_MESSAGE_FIELD_NUMBER, 18) self.assertEqual( unittest_pb2.TestAllTypes.OPTIONAL_NESTED_ENUM_FIELD_NUMBER, 21) self.assertEqual(unittest_pb2.TestAllTypes.REPEATED_INT32_FIELD_NUMBER, 31) self.assertEqual(unittest_pb2.TestAllTypes.REPEATEDGROUP_FIELD_NUMBER, 46) self.assertEqual( unittest_pb2.TestAllTypes.REPEATED_NESTED_MESSAGE_FIELD_NUMBER, 48) self.assertEqual( unittest_pb2.TestAllTypes.REPEATED_NESTED_ENUM_FIELD_NUMBER, 51) def testExtensionFieldNumbers(self): self.assertEqual(unittest_pb2.TestRequired.single.number, 1000) self.assertEqual(unittest_pb2.TestRequired.SINGLE_FIELD_NUMBER, 1000) self.assertEqual(unittest_pb2.TestRequired.multi.number, 1001) self.assertEqual(unittest_pb2.TestRequired.MULTI_FIELD_NUMBER, 1001) self.assertEqual(unittest_pb2.optional_int32_extension.number, 1) self.assertEqual(unittest_pb2.OPTIONAL_INT32_EXTENSION_FIELD_NUMBER, 1) self.assertEqual(unittest_pb2.optionalgroup_extension.number, 16) self.assertEqual(unittest_pb2.OPTIONALGROUP_EXTENSION_FIELD_NUMBER, 16) self.assertEqual(unittest_pb2.optional_nested_message_extension.number, 18) self.assertEqual( unittest_pb2.OPTIONAL_NESTED_MESSAGE_EXTENSION_FIELD_NUMBER, 18) self.assertEqual(unittest_pb2.optional_nested_enum_extension.number, 21) self.assertEqual(unittest_pb2.OPTIONAL_NESTED_ENUM_EXTENSION_FIELD_NUMBER, 21) self.assertEqual(unittest_pb2.repeated_int32_extension.number, 31) self.assertEqual(unittest_pb2.REPEATED_INT32_EXTENSION_FIELD_NUMBER, 31) self.assertEqual(unittest_pb2.repeatedgroup_extension.number, 46) self.assertEqual(unittest_pb2.REPEATEDGROUP_EXTENSION_FIELD_NUMBER, 46) self.assertEqual(unittest_pb2.repeated_nested_message_extension.number, 48) self.assertEqual( unittest_pb2.REPEATED_NESTED_MESSAGE_EXTENSION_FIELD_NUMBER, 48) self.assertEqual(unittest_pb2.repeated_nested_enum_extension.number, 51) self.assertEqual(unittest_pb2.REPEATED_NESTED_ENUM_EXTENSION_FIELD_NUMBER, 51) def testInitKwargs(self): proto = unittest_pb2.TestAllTypes( optional_int32=1, optional_string='foo', optional_bool=True, optional_bytes=b'bar', optional_nested_message=unittest_pb2.TestAllTypes.NestedMessage(bb=1), optional_foreign_message=unittest_pb2.ForeignMessage(c=1), optional_nested_enum=unittest_pb2.TestAllTypes.FOO, optional_foreign_enum=unittest_pb2.FOREIGN_FOO, repeated_int32=[1, 2, 3]) self.assertTrue(proto.IsInitialized()) self.assertTrue(proto.HasField('optional_int32')) self.assertTrue(proto.HasField('optional_string')) self.assertTrue(proto.HasField('optional_bool')) self.assertTrue(proto.HasField('optional_bytes')) self.assertTrue(proto.HasField('optional_nested_message')) self.assertTrue(proto.HasField('optional_foreign_message')) self.assertTrue(proto.HasField('optional_nested_enum')) self.assertTrue(proto.HasField('optional_foreign_enum')) self.assertEqual(1, proto.optional_int32) self.assertEqual('foo', proto.optional_string) self.assertEqual(True, proto.optional_bool) self.assertEqual(b'bar', proto.optional_bytes) self.assertEqual(1, proto.optional_nested_message.bb) self.assertEqual(1, proto.optional_foreign_message.c) self.assertEqual(unittest_pb2.TestAllTypes.FOO, proto.optional_nested_enum) self.assertEqual(unittest_pb2.FOREIGN_FOO, proto.optional_foreign_enum) self.assertEqual([1, 2, 3], proto.repeated_int32) def testInitArgsUnknownFieldName(self): def InitalizeEmptyMessageWithExtraKeywordArg(): unused_proto = unittest_pb2.TestEmptyMessage(unknown='unknown') self._CheckRaises( ValueError, InitalizeEmptyMessageWithExtraKeywordArg, 'Protocol message TestEmptyMessage has no "unknown" field.') def testInitRequiredKwargs(self): proto = unittest_pb2.TestRequired(a=1, b=1, c=1) self.assertTrue(proto.IsInitialized()) self.assertTrue(proto.HasField('a')) self.assertTrue(proto.HasField('b')) self.assertTrue(proto.HasField('c')) self.assertTrue(not proto.HasField('dummy2')) self.assertEqual(1, proto.a) self.assertEqual(1, proto.b) self.assertEqual(1, proto.c) def testInitRequiredForeignKwargs(self): proto = unittest_pb2.TestRequiredForeign( optional_message=unittest_pb2.TestRequired(a=1, b=1, c=1)) self.assertTrue(proto.IsInitialized()) self.assertTrue(proto.HasField('optional_message')) self.assertTrue(proto.optional_message.IsInitialized()) self.assertTrue(proto.optional_message.HasField('a')) self.assertTrue(proto.optional_message.HasField('b')) self.assertTrue(proto.optional_message.HasField('c')) self.assertTrue(not proto.optional_message.HasField('dummy2')) self.assertEqual(unittest_pb2.TestRequired(a=1, b=1, c=1), proto.optional_message) self.assertEqual(1, proto.optional_message.a) self.assertEqual(1, proto.optional_message.b) self.assertEqual(1, proto.optional_message.c) def testInitRepeatedKwargs(self): proto = unittest_pb2.TestAllTypes(repeated_int32=[1, 2, 3]) self.assertTrue(proto.IsInitialized()) self.assertEqual(1, proto.repeated_int32[0]) self.assertEqual(2, proto.repeated_int32[1]) self.assertEqual(3, proto.repeated_int32[2]) class OptionsTest(BaseTestCase): def testMessageOptions(self): proto = message_set_extensions_pb2.TestMessageSet() self.assertEqual(True, proto.DESCRIPTOR.GetOptions().message_set_wire_format) proto = unittest_pb2.TestAllTypes() self.assertEqual(False, proto.DESCRIPTOR.GetOptions().message_set_wire_format) def testPackedOptions(self): proto = unittest_pb2.TestAllTypes() proto.optional_int32 = 1 proto.optional_double = 3.0 for field_descriptor, _ in proto.ListFields(): self.assertEqual(False, field_descriptor.GetOptions().packed) proto = unittest_pb2.TestPackedTypes() proto.packed_int32.append(1) proto.packed_double.append(3.0) for field_descriptor, _ in proto.ListFields(): self.assertEqual(True, field_descriptor.GetOptions().packed) self.assertEqual(descriptor.FieldDescriptor.LABEL_REPEATED, field_descriptor.label) class ClassAPITest(BaseTestCase): @unittest.skipIf( api_implementation.Type() == 'cpp' and api_implementation.Version() == 2, 'C++ implementation requires a call to MakeDescriptor()') def testMakeClassWithNestedDescriptor(self): leaf_desc = descriptor.Descriptor('leaf', 'package.parent.child.leaf', '', containing_type=None, fields=[], nested_types=[], enum_types=[], extensions=[]) child_desc = descriptor.Descriptor('child', 'package.parent.child', '', containing_type=None, fields=[], nested_types=[leaf_desc], enum_types=[], extensions=[]) sibling_desc = descriptor.Descriptor('sibling', 'package.parent.sibling', '', containing_type=None, fields=[], nested_types=[], enum_types=[], extensions=[]) parent_desc = descriptor.Descriptor('parent', 'package.parent', '', containing_type=None, fields=[], nested_types=[child_desc, sibling_desc], enum_types=[], extensions=[]) message_class = reflection.MakeClass(parent_desc) self.assertIn('child', message_class.__dict__) self.assertIn('sibling', message_class.__dict__) self.assertIn('leaf', message_class.child.__dict__) def _GetSerializedFileDescriptor(self, name): """Get a serialized representation of a test FileDescriptorProto. Args: name: All calls to this must use a unique message name, to avoid collisions in the cpp descriptor pool. Returns: A string containing the serialized form of a test FileDescriptorProto. """ file_descriptor_str = ( 'message_type {' ' name: "' + name + '"' ' field {' ' name: "flat"' ' number: 1' ' label: LABEL_REPEATED' ' type: TYPE_UINT32' ' }' ' field {' ' name: "bar"' ' number: 2' ' label: LABEL_OPTIONAL' ' type: TYPE_MESSAGE' ' type_name: "Bar"' ' }' ' nested_type {' ' name: "Bar"' ' field {' ' name: "baz"' ' number: 3' ' label: LABEL_OPTIONAL' ' type: TYPE_MESSAGE' ' type_name: "Baz"' ' }' ' nested_type {' ' name: "Baz"' ' enum_type {' ' name: "deep_enum"' ' value {' ' name: "VALUE_A"' ' number: 0' ' }' ' }' ' field {' ' name: "deep"' ' number: 4' ' label: LABEL_OPTIONAL' ' type: TYPE_UINT32' ' }' ' }' ' }' '}') file_descriptor = descriptor_pb2.FileDescriptorProto() text_format.Merge(file_descriptor_str, file_descriptor) return file_descriptor.SerializeToString() @testing_refleaks.SkipReferenceLeakChecker('MakeDescriptor is not repeatable') # This test can only run once; the second time, it raises errors about # conflicting message descriptors. def testParsingFlatClassWithExplicitClassDeclaration(self): """Test that the generated class can parse a flat message.""" # TODO(xiaofeng): This test fails with cpp implemetnation in the call # of six.with_metaclass(). The other two callsites of with_metaclass # in this file are both excluded from cpp test, so it might be expected # to fail. Need someone more familiar with the python code to take a # look at this. if api_implementation.Type() != 'python': return file_descriptor = descriptor_pb2.FileDescriptorProto() file_descriptor.ParseFromString(self._GetSerializedFileDescriptor('A')) msg_descriptor = descriptor.MakeDescriptor( file_descriptor.message_type[0]) class MessageClass(six.with_metaclass(reflection.GeneratedProtocolMessageType, message.Message)): DESCRIPTOR = msg_descriptor msg = MessageClass() msg_str = ( 'flat: 0 ' 'flat: 1 ' 'flat: 2 ') text_format.Merge(msg_str, msg) self.assertEqual(msg.flat, [0, 1, 2]) @testing_refleaks.SkipReferenceLeakChecker('MakeDescriptor is not repeatable') def testParsingFlatClass(self): """Test that the generated class can parse a flat message.""" file_descriptor = descriptor_pb2.FileDescriptorProto() file_descriptor.ParseFromString(self._GetSerializedFileDescriptor('B')) msg_descriptor = descriptor.MakeDescriptor( file_descriptor.message_type[0]) msg_class = reflection.MakeClass(msg_descriptor) msg = msg_class() msg_str = ( 'flat: 0 ' 'flat: 1 ' 'flat: 2 ') text_format.Merge(msg_str, msg) self.assertEqual(msg.flat, [0, 1, 2]) @testing_refleaks.SkipReferenceLeakChecker('MakeDescriptor is not repeatable') def testParsingNestedClass(self): """Test that the generated class can parse a nested message.""" file_descriptor = descriptor_pb2.FileDescriptorProto() file_descriptor.ParseFromString(self._GetSerializedFileDescriptor('C')) msg_descriptor = descriptor.MakeDescriptor( file_descriptor.message_type[0]) msg_class = reflection.MakeClass(msg_descriptor) msg = msg_class() msg_str = ( 'bar {' ' baz {' ' deep: 4' ' }' '}') text_format.Merge(msg_str, msg) self.assertEqual(msg.bar.baz.deep, 4) if __name__ == '__main__': unittest.main()